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8.1 

 
CHAPTER 8: ANALOG FILTERS 
  
SECTION 8.1: INTRODUCTION 
 
Filters are networks that process signals in a frequency-dependent manner. The basic 
concept of a filter can be explained by examining the frequency dependent nature of the 
impedance of capacitors and inductors. Consider a voltage divider where the shunt leg is 
a reactive impedance. As the frequency is changed, the value of the reactive impedance 
changes, and the voltage divider ratio changes. This mechanism yields the frequency 
dependent change in the input/output transfer function that is defined as the frequency 
response. 
 
Filters have many practical applications. A simple, single-pole, low-pass filter (the 
integrator) is often used to stabilize amplifiers by rolling off the gain at higher 
frequencies where excessive phase shift may cause oscillations.  
 
A simple, single-pole, high-pass filter can be used to block dc offset in high gain 
amplifiers or single supply circuits. Filters can be used to separate signals, passing those 
of interest, and attenuating the unwanted frequencies.   
 
An example of this is a radio receiver, where the signal you wish to process is passed 
through, typically with gain, while attenuating the rest of the signals. In data conversion, 
filters are also used to eliminate the effects of aliases in A/D systems. They are used in 
reconstruction of the signal at the output of a D/A as well, eliminating the higher 
frequency components, such as the sampling frequency and its harmonics, thus 
smoothing the waveform.  
 
There are a large number of texts dedicated to filter theory. No attempt will be made to 
go heavily into much of the underlying math: Laplace transforms, complex conjugate 
poles and the like, although they will be mentioned.  
 
While they are appropriate for describing the effects of filters and examining stability, in 
most cases examination of the function in the frequency domain is more illuminating. 
 
An ideal filter will have an amplitude response that is unity (or at a fixed gain) for the 
frequencies of interest (called the pass band) and zero everywhere else (called the stop 
band). The frequency at which the response changes from passband to stopband is 
referred to as the cutoff frequency.  
 
Figure 8.1(A) shows an idealized low-pass filter. In this filter the low frequencies are in 
the pass band and the higher frequencies are in the stop band. 
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The functional complement to the low-pass filter is the high-pass filter. Here, the low 
frequencies are in the stop-band, and the high frequencies are in the pass band. 
Figure 8.1(B) shows the idealized high-pass filter. 
 

 

Figure 8.1: Idealized Filter Responses 

 
If a high-pass filter and a low-pass filter are cascaded, a band pass filter is created. The 
band pass filter passes a band of frequencies between a lower cutoff frequency, f l, and an 
upper cutoff frequency, f h. Frequencies below f l and above f h are in the stop band. An 
idealized band pass filter is shown in Figure 8.1(C). 
 
A complement to the band pass filter is the band-reject, or notch filter. Here, the pass 
bands include frequencies below f l and above f h. The band from f l to f h is in the stop 
band. Figure 8.1(D) shows a notch response. 
 
The idealized filters defined above, unfortunately, cannot be easily built. The transition 
from pass band to stop band will not be instantaneous, but instead there will be a 
transition region. Stop band attenuation will not be infinite.  
 
The five parameters of a practical filter are defined in Figure 8.2, opposite. 
 
The cutoff frequency (Fc) is the frequency at which the filter response leaves the error 
band (or the −3 dB point for a Butterworth response filter). The stop band frequency (Fs) 
is the frequency at which the minimum attenuation in the stopband is reached. The pass 
band ripple (Amax) is the variation (error band) in the pass band response. The minimum 
pass band attenuation (Amin) defines the minimum signal attenuation within the stop 
band. The steepness of the filter is defined as the order (M) of the filter. M is also the 
number of poles in the transfer function.  A pole is a root of the denominator of the 
transfer function. Conversely, a zero is a root of the numerator of the transfer function. 

FREQUENCY

M
AG

N
IT

U
D

E

FREQUENCY

(A) Lowpass (B) Highpass

(C) Bandpass (D) Notch (Bandreject)

M
AG

N
IT

U
D

E

M
AG

N
IT

U
D

E

M
AG

N
IT

U
D

E

FREQUENCY FREQUENCY

fc fc

f1 fh f1 fh



ANALOG FILTERS 
INTRODUCTION 

 

8.3 

Each pole gives a –6 dB/octave or –20 dB/decade response. Each zero gives a                 
+6 dB/octave, or  +20 dB/decade response.    

 

Figure 8.2: Key Filter Parameters 

 
Note that not all filters will have all these features. For instance, all-pole configurations 
(i.e. no zeros in the transfer function) will not have ripple in the stop band. Butterworth 
and Bessel filters are examples of all-pole filters with no ripple in the pass band. 
 
Typically, one or more of the above parameters will be variable. For instance, if you were 
to design an antialiasing filter for an ADC, you will know the cutoff frequency (the 
maximum frequency that you want to pass), the stop band frequency, (which will 
generally be the Nyquist frequency (= ½ the sample rate)) and the minimum attenuation 
required (which will be set by the resolution or dynamic range of the system). You can 
then go to a chart or computer program to determine the other parameters, such as filter 
order, F0, and Q, which determines the peaking of the section, for the various sections 
and/or component values.  
 
It should also be pointed out that the filter will affect the phase of a signal, as well as the 
amplitude. For example, a single-pole section will have a 90° phase shift at the crossover 
frequency.  A pole pair will have a 180° phase shift at the crossover frequency. The Q of 
the filter will determine the rate of change of the phase. This will be covered more in 
depth in the next section. 
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SECTION 8.2: THE TRANSFER FUNCTION 
 
The S-Plane 
 
Filters have a frequency dependent response because the impedance of a capacitor or an 
inductor changes with frequency. Therefore the complex impedances:                                                         

and  

are used to describe the impedance of an inductor and a capacitor, respectively,  

 
where σ is the Neper frequency in nepers per second  (NP/s) and ω is the angular 
frequency in radians per sec (rad/s).  
 
By using standard circuit analysis techniques, the transfer equation of the filter can be 
developed. These techniques include Ohm’s law, Kirchoff’s voltage and current laws, 
and superposition, remembering that the impedances are complex. The transfer equation 
is then: 

 
Therefore, H(s) is a rational function of s with real coefficients with the degree of m for 
the numerator and n for the denominator. The degree of the denominator is the order of 
the filter. Solving for the roots of the equation determines the poles (denominator) and 
zeros (numerator) of the circuit. Each pole will provide a –6 dB/octave or –20 dB/decade 
response. Each zero will provide a +6 dB/octave or +20 dB/decade response. These roots 
can be real or complex. When they are complex, they occur in conjugate pairs. These 
roots are plotted on the s plane (complex plane) where the horizontal axis is σ (real axis) 
and the vertical axis is ω (imaginary axis). How these roots are distributed on the s plane 
can tell us many things about the circuit. In order to have stability, all poles must be in 
the left side of the plane. If we have a zero at the origin, that is a zero in the numerator, 
the filter will have no response at dc (high-pass or band pass).  
 
Assume an RLC circuit, as in Figure 8.3. Using the voltage divider concept it can be 
shown that the voltage across the resistor is: 

amsm + am-1sm-1 + … + a1s + a0

bnsn + bn-1sn-1 + … + b1s + b0
H(s) =

 

RCs

LCs2 + RCs + 1
== V o

V in
H (s)

 

ZC = 1
s C

ZL = s L

s = σ + jω

Eq. 8-1 

Eq. 8-2 

Eq. 8-3 

Eq. 8-4 

Eq. 8-5 
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Figure 8.3: RLC Circuit 

 
Substituting the component values into the equation yields: 

 
Factoring the equation and normalizing gives: 

 

Figure 8.4: Pole and Zero Plotted on the s-Plane 

 

 

xx[ s - ( -0.5 + j 3.122 )   103]   [ s - ( -0.5 - j 3.122 )   103]x

s
xH(s) = 103

xx[ s - ( -0.5 + j 3.122 )   103]   [ s - ( -0.5 - j 3.122 )   103]x

s
xH(s) = 103 xH(s) = 103

~

10mH 10µF

10Ω VOUT

H(s) = 103 
s

s2 + 103s + 107
x

X

X

+3.122

–3.122

–0.5

Im (krad / s)

Re (kNP / s)

Eq. 8-6 

Eq 8-7 
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This gives a zero at the origin and a pole pair at: 

 

Next, plot these points on the s plane as shown in Figure 8.4: 

 

The above discussion has a definite mathematical flavor. In most cases we are more 
interested in the circuit’s performance in real applications. While working in the s plane 
is completely valid, I’m sure that most of us don’t think in terms of Nepers and imaginary 
frequencies. 

 
 
Fo and Q 
 
So if it is not convenient to work in the s plane, why go through the above discussion? 
The answer is that the groundwork has been set for two concepts that will be infinitely 
more useful in practice: Fo and Q.  
 
Fo is the cutoff frequency of the filter. This is defined, in general, as the frequency where  
the response is down 3 dB from the pass band. It can sometimes be defined as the 
frequency at which it will fall out of the pass band. For example, a 0.1 dB Chebyshev 
filter can have its Fo at the frequency at which the response is down > 0.1 dB. 
 
The shape of the attenuation curve (as well as the phase and delay curves, which define 
the time domain response of the filter) will be the same if the ratio of the actual frequency 
to the cutoff frequency is examined, rather than just the actual frequency itself. 
Normalizing the filter to 1 rad/s, a simple system for designing and comparing filters can 
be developed. The filter is then scaled by the cutoff frequency to determine the 
component values for the actual filter. 
 
Q is the “quality factor” of the filter. It is also sometimes given as α where: 

This is commonly known as the damping ratio. ξ is sometimes used where: 

 
If Q is > 0.707, there will be some peaking in the filter response. If the Q is < 0.707, 
rolloff at F0 will be greater; it will have a more gentle slope and will begin sooner. The 
amount of peaking for a 2 pole low-pass filter vs. Q is shown in Figure 8.5. 

α = 1
Q

ξ = 2 α

Eq. 8-9 

Eq. 8-10 

s = (-0.5 ± j3.122) x 103 Eq. 8-8 
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Figure 8.5: Low-Pass Filter Peaking vs. Q 

 
Rewriting the transfer function H(s) in terms of ωo and Q: 

 
where Ho is the pass-band gain and ωo = 2π Fo. 
 
This is now the low-pass prototype that will be used to design the filters. 
 
 
High-Pass Filter 
 
Changing the numerator of the transfer equation, H(s), of the low-pass prototype to H0s2 

transforms the low-pass filter into a high-pass filter. The response of the high-pass filter 
is similar in shape to a low-pass, just inverted in frequency. 
 
The transfer function of a high-pass filter is then: 

The response of a 2-pole high-pass filter is illustrated in Figure 8.6.  
 

H(s) = 
H0 s2

+ ω0
2s2  +

ω0

Q
s

Eq. 8-12 

H (s) = 
+ ω 0

2s2  +

H 0

ω 0

Q
s

Eq. 8-11 
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Figure 8.6: High- Pass Filter Peaking vs. Q 

 
 
Band-Pass Filter 
 
Changing the numerator of the lowpass prototype to Hoωo

2 will convert the filter to a 
band-pass function. 
 
The transfer function of a band-pass filter is then: 

ωo here is the frequency (F0 = 2 π ω0) at which the gain of the filter peaks.  
 
Ho is the circuit gain and is defined: 
  

Ho = H/Q. 
 
Q has a particular meaning for the band-pass response. It is the selectivity of the filter. It 
is defined as:  

where FL and FH are the frequencies where the response is –3 dB from the maximum. 
 
The bandwidth (BW) of the filter is described as:  
It can be shown that the resonant frequency (F0) is the geometric mean of FL and FH, 

Q =
F0

FH - FL

BW = FH - FL

H(s) = 
+ ω0

2s2  +

H0ω0
2

ω0

Q
s

H(s) = 
+ ω0

2s2  +

H0ω0
2

ω0

Q
s

ω0

Q
s

Eq. 8-13 
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which means that F0 will appear half way between FL and FH on a logarithmic scale.  

 
Also, note that the skirts of the band-pass response will always be symmetrical around F0 
on a logarithmic scale. 
 
The response of a band-pass filter to various values of Q are shown in Figure 8.7.  
 
A word of caution is appropriate here. Band-pass filters can be defined two different 
ways. The narrow-band case is the classic definition that we have shown above.  
 
In some cases, however, if the high and low cutoff frequencies are widely separated, the 
band-pass filter is constructed out of separate high-pass and low-pass sections. Widely 
separated in this context means separated by at least 2 octaves (× 4 in frequency). This is 
the wideband case. 

 

Figure 8.7: Band-Pass Filter Peaking vs. Q 

 
Band-Reject (Notch) Filter 
 
By changing the numerator to s2 + ωz

2, we convert the filter to a band-reject or notch 
filter. As in the bandpass case, if the corner frequencies of the band-reject filter are 
separated by more than an octave (the wideband case), it can be built out of separate low-
pass and high-pass sections. We will adopt the following convention: A narrow-band 
band-reject filter will be referred to as a notch filter and the wideband band-reject filter 
will be referred to as band-reject filter. 
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A notch (or band-reject) transfer function is: 
 
 
 
 
 
There are three cases of the notch filter characteristics. These are illustrated in Figure 8.8 
(opposite). The relationship of the pole frequency, ω0, and the zero frequency, ωz, 
determines if the filter is a standard notch, a lowpass notch or a highpass notch. 
 
If the zero frequency is equal to the pole frequency a standard notch exists. In this 
instance the zero lies on the jω plane where the curve that defines the pole frequency 
intersects the axis. 
 
A lowpass notch occurs when the zero frequency is greater than the pole frequency. In 
this case ωz lies outside the curve of the pole frequencies. What this means in a practical  
sense is that the filter's response below ωz will be greater than the response above ωz. 
This results in an elliptical low-pass filter. 
 

 

Figure 8.8: Standard, Lowpass, and Highpass Notches 

 

A high-pass notch filter occurs when the zero frequency is less than the pole frequency. 
In this case ωz  lies inside the curve of the pole frequencies. What this means in a 
practical sense is that the filters response below ωz  will be less than the response above 
ωz . This results in an elliptical high-pass filter. 

H(s) =  
H0 (  s2 + ωz

2)

+ ω0
2s2  + 

ω0

Q 
s 

 
Eq. 8-18 
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Figure 8.9: Notch Filter Width versus Frequency for Various Q Values 

 
The variation of the notch width with Q is shown in Figure 8.9. 
 
 
All-pass Filter 
 
There is another type of filter that leaves the amplitude of the signal intact but introduces  
phase shift. This type of filter is called an all-pass. The purpose of this filter is to add 
phase shift (delay) to the response of the circuit. The amplitude of an all-pass is unity for 
all frequencies. The phase response, however, changes from 0° to 360° as the frequency 
is swept from 0 to infinity. The purpose of an all-pass filter is to provide phase 
equalization, typically in pulse circuits. It also has application in single side band, 
suppressed carrier (SSB-SC) modulation circuits.  
 
The transfer function of an all-pass filter is: 

 
Note that an all-pass transfer function can be synthesized as: 
 

HAP = HLP – HBP + HHP = 1 – 2HBP. 
 
Figure 8.10 (opposite) compares the various filter types. 

H(s)  =

+ ω0
2s2  +

ω0

Q
s

+ ω0
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Q
s

Eq. 8-19 
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Figure 8.10: Standard Second-order Filter Responses 
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Phase Response 
 
As mentioned earlier, a filter will change the phase of the signal as well as the amplitude. 
The question is, does this make a difference? Fourier analysis indicates a square wave is 
made up of a fundamental frequency and odd order harmonics. The magnitude and phase 
responses, of the various harmonics, are precisely defined. If the magnitude or phase 
relationships are changed, then the summation of the harmonics will not add back 
together properly to give a square wave. It will instead be distorted, typically showing 
overshoot and ringing or a slow rise time. This would also hold for any complex 
waveform. 
 
Each pole of a filter will add 45° of phase shift at the corner frequency. The phase will 
vary from 0° (well below the corner frequency) to 90° (well beyond the corner 
frequency). The start of the change can be more than a decade away. In multipole filters, 
each of the poles will add phase shift, so that the total phase shift will be multiplied by 
the number of poles (180° total shift for a two pole system, 270° for a three pole system, 
etc.).  
 
The phase response of a single-pole, low-pass filter is: 

 
The phase response of a low-pass pole pair is: 
 

 
For a single-pole, high-pass filter the phase response is: 

 
 The phase response of a high-pass pole pair is: 

 

+ √ 4 - α2ω 
ωo

( )- arctan 1
α[ ]2

- √ 4 - α2ω 
ωo

( )- arctan 1
α[ ]2

φ (ω) =

φ (ω) = - arctan 
ω 
ωo

π
2

φ (ω) = + √ 4 - α2ω 
ωo

( )- arctan 1
α[ ]2

- √ 4 - α2ω 
ωo

( )- arctan 1
α[ ]2

π

φ (ω) = - arctan 
ω
ωo

φ (ω) = - arctan 
ω
ωo

ω
ωo

Eq. 8-21 

Eq. 8-22 

Eq. 8-23 

Eq. 8-24 
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The phase response of a band-pass filter is: 

 
The variation of the phase shift with frequency due to various values of Q is shown in 
Figure 8.11 (for low-pass, high-pass, band-pass, and all-pass) and in Figure 8.12 (for 
notch). 

Figure 8.11: Phase Response vs. Frequency 
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Figure 8.12: Notch Filter Phase Response 

 
It is also useful to look at the change of phase with frequency. This is the group delay of 
the filter. A flat (constant) group delay gives best phase response, but, unfortunately, it 
also gives the least amplitude discrimination. The group delay of a single low-pass pole 

is: 

For the low-pass pole pair it is: 
For the single high-pass pole it is: 
 

For the high-pass pole pair it is: 

 

 
And for the band-pass pole pair it is: 
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The Effect of Nonlinear Phase 
 
A waveform can be represented by a series of frequencies of specific amplitude, 
frequency and phase relationships. For example, a square wave is: 

 
If this waveform were passed through a filter, the amplitude and phase response of the 
filter to the various frequency components of the waveform could be different. If the 
phase delays were identical, the waveform would pass through the filter undistorted. If, 
however, the different components of the waveform were changed due to different 
amplitude and phase response of the filter to those frequencies, they would no longer add 
up in the same manner. This would change the shape of the waveform. These distortions 
would manifest themselves in what we typically call overshoot and ringing of the output. 
 
Not all signals will be composed of harmonically related components. An amplitude 
modulated (AM) signal, for instance, will consist of a carrier and 2 sidebands at ± the 
modulation frequency. If the filter does not have the same delay for the various waveform 
components, then “envelope delay” will occur and the output wave will be distorted. 
 
Linear phase shift results in constant group delay since the derivative of a linear function 
is a constant. 

F(t) = A(       +      sin ω t  +         sin 3ω t  +        sin 5ω t  +        sin 7ω t + ….) 1
2

2
π

2
3 π

2
5 π

2
7 π

Eq. 8-31 



 BASIC LINEAR DESIGN  
 

8.18 

Notes:



ANALOG FILTERS 
TIME DOMAIN RESPONSES 

8.19 

SECTION 8.3: TIME DOMAIN RESPONSE 
 
Up until now the discussion has been primarily focused on the frequency domain 
response of filters. The time domain response can also be of concern, particularly under 
transient conditions. Moving between the time domain and the frequency domain is 
accomplished by the use of the Fourier and Laplace transforms. This yields a method of 
evaluating performance of the filter to a nonsinusoidal excitation.  
 
The transfer function of a filter is the ratio of the output to input time functions. It can be 
shown that the impulse response of a filter defines its bandwidth. The time domain 
response is a practical consideration in many systems, particularly communications, 
where many modulation schemes use both amplitude and phase information.  
 
Impulse Response 
 
The impulse function is defined as an infinitely high, infinitely narrow pulse, with an area 
of unity. This is, of course, impossible to realize in a physical sense. If the impulse width 
is much less than the rise time of the filter, the resulting response of the filter will give a 
reasonable approximation actual impulse response of the filter response. 
 
The impulse response of a filter, in the time domain, is proportional to the bandwidth of 
the filter in the frequency domain. The narrower the impulse, the wider the bandwidth of 
the filter. The pulse amplitude is equal to ωc/π, which is also proportional to the filter 
bandwidth, the height being taller for wider bandwidths. The pulse width is equal to 
2π/ωc, which is inversely proportional to bandwidth. It turns out that the product of the 
amplitude and the bandwidth is a constant. 
 
It would be a nontrivial task to calculate the response of a filter without the use of 
Laplace and Fourier transforms. The Laplace transform converts multiplication and 
division to addition and subtraction, respectively. This takes equations, which are 
typically loaded with integration and/or differentiation, and turns them into simple 
algebraic equations, which are much easier to deal with. The Fourier transform works in 
the opposite direction. 
 
The details of these transform will not be discussed here. However, some general 
observations on the relationship of the impulse response to the filter characteristics will 
be made. 
 
It can be shown, as stated, that the impulse response is related to the bandwidth. 
Therefore, amplitude discrimination (the ability to distinguish between the desired signal 
from other, out of band signals and noise) and time response are inversely proportional. 
That is to say that the filters with the best amplitude response are the ones with the worst 
time response. For all-pole filters, the Chebyshev filter gives the best amplitude 
discrimination, followed by the Butterworth and then the Bessel.  
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If the time domain response were ranked, the Bessel would be best, followed by the 
Butterworth and then the Chebyshev. Details of the different filter responses will be 
discussed in the next section.  
 
The impulse response also increases with increasing filter order. Higher filter order 
implies greater bandlimiting, therefore degraded time response. Each section of a 
multistage filter will have its own impulse response, and the total impulse response is the 
accumulation of the individual responses. The degradation in the time response can also 
be related to the fact that as frequency discrimination is increased, the Q of the individual 
sections tends to increase. The increase in Q increases the overshoot and ringing of the 
individual sections, which implies longer time response.    
 
 
Step Response 
 
The step response of a filter is the integral of the impulse response. Many of the 
generalities that apply to the impulse response also apply to the step response. The slope 
of the rise time of the step response is equal to the peak response of the impulse. The 
product of the bandwidth of the filter and the rise time is a constant. Just as the impulse 
has a function equal to unity, the step response has a function equal to 1/s. Both of these 
expressions can be normalized, since they are dimensionless. 
 
The step response of a filter is useful in determining the envelope distortion of a 
modulated signal. The two most important parameters of a filter's step response are the 
overshoot and ringing. Overshoot should be minimal for good pulse response. Ringing 
should decay as fast as possible, so as not to interfere with subsequent pulses. 
 
Real life signals typically aren’t made up of impulse pulses or steps, so the transient 
response curves don’t give a completely accurate estimation of the output. They are, 
however, a convenient figure of merit so that the transient responses of the various filter 
types can be compared on an equal footing.  
 
Since the calculations of the step and impulse response are mathematically intensive, 
they are most easily performed by computer. Many CAD (Computer Aided Design) 
software packages have the ability to calculate these responses. Several of these 
responses are also collected in the next section. 
                                                 



ANALOG FILTERS 
STANDARD  RESPONSES 

8.21 

SECTION 8.4: STANDARD RESPONSES 
 
There are many transfer functions that may satisfy the attenuation and/or phase 
requirements of a particular filter. The one that you choose will depend on the particular 
system. The importance of the frequency domain response versus the time domain 
response must be determined. Also, both of these considerations might be traded off 
against filter complexity, and thereby cost. 
 
Butterworth 
 
The Butterworth filter is the best compromise between attenuation and phase response. It 
has no ripple in the pass band or the stop band, and because of this is sometimes called a 
maximally flat filter. The Butterworth filter achieves its flatness at the expense of a 
relatively wide transition region from pass band to stop band, with average transient 
characteristics. 
 
The normalized poles of the Butterworth filter fall on the unit circle (in the s plane). The 
pole positions are given by: 

 
where K is the pole pair number, and n is the number of poles. 
 
The poles are spaced equidistant on the unit circle, which means the angles between the 
poles are equal. 
 
Given the pole locations, ω0, and α (or Q) can be determined. These values can then be 
use to determine the component values of the filter. The design tables for passive filters 
use frequency and impedance normalized filters. They are normalized to a frequency of 1 
rad/sec and impedance of 1 Ω. These filters can be denormalized to determine actual 
component values. This allows the comparison of the frequency domain and/or time 
domain responses of the various filters on equal footing. The Butterworth filter is 
normalized for a –3 dB response at ωo = 1. 
 
The values of the elements of the Butterworth filter are more practical and less critical 
than many other filter types. The frequency response, group delay, impulse response, and 
step response are shown in Figure 8.15. The pole locations and corresponding ωo and α 
terms are tabulated in Figure 8.26. 
 
Chebyshev  
 
The Chebyshev (or Chevyshev, Tschebychev, Tschebyscheff or Tchevysheff, depending 
on how you translate from Russian) filter has a smaller transition region than the same-
order Butterworth filter, at the expense of ripples in its pass band. This filter gets its name 

(2K-1)π
2n

(2K-1)π
2n

-sin + j cos K=1,2....n Eq. 8-32 
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because the Chebyshev filter minimizes the height of the maximum ripple, which is the 
Chebyshev criterion.  
 
Chebyshev filters have 0 dB relative attenuation at dc. Odd order filters have an 
attenuation band that extends from 0 dB to the ripple value. Even order filters have a gain 
equal to the pass band ripple. The number of cycles of ripple in the pass band is equal to 
the order of the filter. 
 
The poles of the Chebyshev filter can be determined by moving the poles of the 
Butterworth filter to the right, forming an ellipse. This is accomplished by multiplying 
the real part of the pole by kr and the imaginary part by kI.  The values kr and k I  can be 
computed by: 
     K r  = sinh A 
 
     KI =  cosh A 
where: 

where n is the filter order and: 

 
where: 

where: 
RdB = pass band ripple in dB 

 
The Chebyshev filters are typically normalized so that the edge of the ripple band is at  
ωo = 1. The 3 dB bandwidth is given by: 

 
This is tabulated in Table 1. 
 
The frequency response, group delay, impulse response and step response are cataloged 
in Figures 8.16 to 8.20 on following pages, for various values of pass band ripple (0 .01 
dB, 0.1 dB, 0.25 dB, 0.5 dB, and 1 dB). The pole locations and corresponding ωo and α 
terms for these values of ripple are tabulated in Figures 8.27 to 8.31 on following pages. 
 

A =       sinh-11
n

1
ε

ε =  √ 10R -1

RdB
10R =

A3dB =       cosh-11
n

1
ε(  )

Eq. 8-33 
 
Eq. 8-34 
 
 
Eq. 8-35 
 
 
 
Eq. 8-36 
 
 
 
 
Eq. 8-37 
 
 
Eq. 8-38 

Eq. 8-39 
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Table 1:   3dB Bandwidth to Ripple Bandwidth for Chebyshev Filters 
 
 
 
Bessel 
 
Butterworth filters have fairly good amplitude and transient behavior. The Chebyshev 
filters improve on the amplitude response at the expense of transient behavior. The 
Bessel filter is optimized to obtain better transient response due to a linear phase (i.e. 
constant delay) in the passband. This means that there will be relatively poorer frequency 
response (less amplitude discrimination). 
 
The poles of the Bessel filter can be determined by locating all of the poles on a circle 
and separating their imaginary parts by: 

where n is the number of poles. Note that the top and bottom poles are distanced by 
where the circle crosses the jω axis by: 

or half the distance between the other poles. 
 
The frequency response, group delay, impulse response and step response for the Bessel 
filters are cataloged in Figure 8.21. The pole locations and corresponding ωo and α terms 
for the Bessel filter are tabulated in Figure 8.32. 
 

1
n

2
n Eq. 8-40 

Eq. 8-41 

ORDER .01dB .1dB .25dB .5dB 1dB
2 3.30362 1.93432 1.59814 1.38974 1.21763
3 1.87718 1.38899 1.25289 1.16749 1.09487
4 1.46690 1.21310 1.13977 1.09310 1.05300
5 1.29122 1.13472 1.08872 1.05926 1.03381
6 1.19941 1.09293 1.06134 1.04103 1.02344
7 1.14527 1.06800 1.04495 1.03009 1.01721
8 1.11061 1.05193 1.03435 1.02301 1.01316
9 1.08706 1.04095 1.02711 1.01817 1.01040

10 1.07033 1.03313 1.02194 1.01471 1.00842

ORDER .01dB .1dB .25dB .5dB 1dB
2 3.30362 1.93432 1.59814 1.38974 1.21763
3 1.87718 1.38899 1.25289 1.16749 1.09487
4 1.46690 1.21310 1.13977 1.09310 1.05300
5 1.29122 1.13472 1.08872 1.05926 1.03381
6 1.19941 1.09293 1.06134 1.04103 1.02344
7 1.14527 1.06800 1.04495 1.03009 1.01721
8 1.11061 1.05193 1.03435 1.02301 1.01316
9 1.08706 1.04095 1.02711 1.01817 1.01040

10 1.07033 1.03313 1.02194 1.01471 1.00842
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Linear Phase with Equiripple Error 
 
The linear phase filter offers linear phase response in the pass band, over a wider range 
than the Bessel, and superior attenuation far from cutoff. This is accomplished by letting 
the phase response have ripples, similar to the amplitude ripples of the Chebyshev. As the 
ripple is increased, the region of constant delay extends further into the stopband. This 
will also cause the group delay to develop ripples, since it is the derivative of the phase 
response. The step response will show slightly more overshoot than the Bessel and the 
impulse response will show a bit more ringing. 
 
It is difficult to compute the pole locations of a linear phase filter. Pole locations are 
taken from the Williams book (see Reference 2), which, in turn, comes from the Zverev 
book (see Reference 1). 
 
The frequency response, group delay, impulse response and step response for linear 
phase filters of 0.05° ripple and 0.5° ripple are given in Figures 8.22 and 8.23. The pole 
locations and corresponding ωo and α terms are tabulated in Figures 8.33 and 8.34. 
 
 
Transitional Filters 
 
A transitional filter is a compromise between a Gaussian filter, which is similar to a 
Bessel, and the Chebyshev. A transitional filter has nearly linear phase shift and smooth, 
monotonic rolloff in the pass band. Above the pass band there is a break point beyond 
which the attenuation increases dramatically compared to the Bessel, and especially at 
higher values of n. 
 
Two transition filters have been tabulated. These are the Gaussian to 6 dB and Gaussian 
to 12 dB.  
  
The Gaussian to 6 dB filter has better transient response than the Butterworth in the pass 
band. Beyond the breakpoint, which occurs at ω = 1.5, the rolloff is similar to the 
Butterworth. 
 
The Gaussian to 12 dB filter’s transient response is much better than Butterworth in the 
pass band. Beyond the 12dB breakpoint, which occurs at ω = 2, the attenuation is less 
than the Butterworth. 
 
As is the case with the linear phase filters, pole locations for transitional filters do not 
have a closed form method for computation. Again, pole locations are taken from 
Williams's book (see Reference 2). These were derived from iterative techniques. 
 
The frequency response, group delay, impulse response and step response for Gaussian to 
12 dB and 6 dB are shown in Figures 8.24 and 8.25. The pole locations and 
corresponding ωo and α terms are tabulated in Figures 8.35 and 8.36. 
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Comparison of All-Pole Responses 
 
The responses of several all-pole filters, namely the Bessel, Butterworth, and Chebyshev 
(in this case of 0.5 dB ripple) will now be compared. An 8 pole filter is used as the basis 
for the comparison. The responses have been normalized for a cutoff of 1 Hz. Comparing 
Figures 8.13 and 8.14 below, it is easy to see the trade-offs in the response types. Moving 
from Bessel through Butterworth to Chebyshev, notice that the amplitude discrimination 
improves as the transient behavior gets progressively poorer. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8.13:  Comparison of Amplitude Response of  
Bessel, Butterworth, and Chebyshev Filters 

Figure 8.14: Comparison of Step and Impulse Responses  
of Bessel, Butterworth, and Chebyshev Filters 
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Elliptical 
 
The previously mentioned filters are all-pole designs, which mean that the zeros of the 
transfer function  (roots of the numerator) are at one of the two extremes of the frequency 
range (0 or ∞). For a low-pass filter, the zeros are at f = ∞. If finite frequency transfer 
function zeros are added to poles an Elliptical filter (sometimes referred to as Cauer 
filters) is created. This filter has a shorter transition region than the Chebyshev filter 
because it allows ripple in both the stop band and pass band. It is the addition of zeros in 
the stop band that causes ripple in the stop band but gives a much higher rate of 
attenuation, the most possible for a given number of poles. There will be some 
“bounceback” of the stop band response between the zeros. This is the stop band ripple. 
The Elliptical filter also has degraded time domain response.  
 
Since the poles of an elliptic filter are on an ellipse, the time response of the filter 
resembles that of the Chebyshev. 
 
An Elliptic filter is defined by the parameters shown in Figure 8.2, those being Amax, the 
maximum ripple in the passband, Amin, the minimum attenuation in the stopband, Fc, the 
cutoff frequency, which is where the frequency response leaves the pass band ripple and 
FS, the stopband frequency, where the value of Amax is reached.  
 
An alternate approach is to define a filter order n, the modulation angle, θ, which defines 
the rate of attenuation in the transition band, where: 

 
and ρ which determines the pass band ripple, where: 

where ε is the ripple factor developed for the Chebyshev response, and the pass band 
ripple is: 
                   RdB = - 10 log (1 - ρ2) 
 
Some general observations can be made. For a given filter order n, and θ, Amin increases 
as the ripple is made larger. Also, as θ approaches 90°, FS approaches FC. This results in 
extremely short transition region, which means sharp rolloff. This comes at the expense 
of lower Amin.   
 
As a side note, ρ determines the input resistance of a passive elliptical filter, which can 
then be related to the VSWR (Voltage Standing Wave Ratio). 
 
Because of the number of variables in the design of an elliptic filter, it is difficult to 
provide the type of tables provided for the previous filter types. Several CAD (Computer 
Aided Design) packages can provide the design values. Alternatively several sources, 

√ ε2

1 + ε2ρ = √ ε2

1 + ε2ρ = ε2

1 + ε2ρ =

θ = sin-1 1 
Fs

θ = sin-1 1 
Fs

Eq. 8-42 

Eq. 8-43 

Eq. 8-44 



ANALOG FILTERS 
STANDARD  RESPONSES 

8.27 

such as Williams's (see Reference 2), provide tabulated filter values. These tables classify 
the filter by 

 
where the C denotes Cauer. Elliptical filters are sometime referred to as Cauer filters 
after the network theorist Wilhelm Cauer. 
 
 
Maximally Flat Delay with Chebyshev Stop Band 
 
Bessel type (Bessel, linear phase with equiripple error and transitional) filters give 
excellent transient behavior, but less than ideal frequency discrimination. Elliptical filters 
give better frequency discrimination, but degraded transient response. A maximally flat 
delay with Chebyshev stop band filter takes a Bessel type function and adds transmission 
zeros. The constant delay properties of the Bessel type filter in the pass band are 
maintained, and the stop band attenuation is significantly improved. The step response 
exhibits no overshoot or ringing, and the impulse response is clean, with essentially no 
oscillatory behavior. Constant group delay properties extend well into the stop band for 
increasing n. 
 
As with the elliptical filter, numeric evaluation is difficult. Williams’s book (see 
Reference 2) tabulates passive prototypes normalized component values. 
 
 
Inverse Chebyshev 
 
The Chebyshev response has ripple in the pass band and a monotonic stop band. The 
inverse Chebyshev response can be defined that has a monotonic pass band and ripple in 
the stop band. The inverse Chebyshev has better pass band performance than even the 
Butterworth. It is also better than the Chebyshev, except very near the cutoff frequency.  
In the transition band, the inverse Chebyshev has the steepest rolloff. Therefore, the 
inverse Chebyshev will meet the Amin specification at the lowest frequency of the three. 
In the stop band there will, however, be response lobes which have a magnitude of: 
 

 
where ε is the ripple factor defined for the Chebyshev case. This means that deep into the 
stop band, both the Butterworth and Chebyshev will have better attenuation, since they 
are monotonic in the stop band. In terms of transient performance, the inverse Chebyshev 
lies midway between the Butterworth and the Chebyshev. 
 

C  n  ρ  θ

ε2

(1 - ε)
ε2

(1 - ε) Eq. 8-45 
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The inverse Chebyshev response can be generated in three steps. First take a Chebyshev 
low pass filter. Then subtract this response from 1. Finally, invert in frequency by 
replacing ω with 1/ω.  
 
These are by no means all the possible transfer functions, but they do represent the most 
common.  
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Using the Prototype Response Curves 
 

In the following pages, the response curves and the design tables for several of the low 
pass prototypes of the all-pole responses will be cataloged. All the curves are normalized 
to a −3 dB cutoff frequency of 1 Hz. This allows direct comparison of the various 
responses. In all cases the amplitude response for the 2 through 10 pole cases for the 
frequency range of 0.1 Hz. to 10 Hz. will be shown. Then a detail of the amplitude 
response in the 0.1 Hz to 2 Hz. pass band will be shown. The group delay from 0.1 Hz to 
10 Hz and the impulse response and step response from 0 seconds to 5 seconds will also 
be shown. 
 
To use these curves to determine the response of real life filters, they must be 
denormalized. In the case of the amplitude responses, this is simply accomplished by 
multiplying the frequency axis by the desired cutoff frequency FC. To denormalize the 
group delay curves, we divide the delay axis by 2π FC, and multiply the frequency axis 
by FC, as before. Denormalize the step response by dividing the time axis by 2π FC. 
Denormalize the impulse response by dividing the time axis by 2π FC and multiplying the 
amplitude axis by the same amount. 
 
For a high-pass filter, simply invert the frequency axis for the amplitude response. In 
transforming a low-pass filter into a high-pass (or band-reject) filter, the transient 
behavior is not preserved. Zverev (see Reference 1) provides a computational method for 
calculating these responses. 
 
In transforming a lowpass into a narrowband bandpass, the 0Hz axis is moved to the 
center frequency F0. It stands to reason that the response of the bandpass case around the 
center frequency would then match the lowpass response around 0Hz. The frequency 
response curve of a lowpass filter actually mirrors itself around 0Hz, although we 
generally don’t concern ourselves with negative frequency.  
 
To denormalize the group delay curve for a bandpass filter, divide the delay axis by 
πBW, where BW is the 3dB bandwidth in Hz. Then multiply the frequency axis by 
BW/2. In general, the delay of the bandpass filter at F0 will be twice the delay of the 
lowpass prototype with the same bandwidth at 0Hz. This is due to the fact that the 
lowpass to bandpass transformation results in a filter with order 2n, even though it is 
typically referred to it as having the same order as the lowpass filter from which it is 
derived. This approximation holds for narrow-band filters. As the bandwidth of the filter 
is increased, some distortion of the curve occurs. The delay becomes less symmetrical, 
peaking below F0. 
 
The envelope of the response of a band-pass filter resembles the step response of the 
lowpass prototype. More exactly, it is almost identical to the step response of a low-pass 
filter having half the bandwidth. To determine the envelope response of the band-pass 
filter, divide the time axis of the step response of the lowpass prototype by πBW, where 
BW is the 3dB bandwidth. The previous discussions of overshoot, ringing, etc. can now 
be applied to the carrier envelope. 
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The envelope of the response of a narrow-band band-pass filter to a short burst of carrier 
(that is where the burst width is much less than the rise time of the denormalized step 
response of the band-pass filter) can be determined by denormalizing the impulse 
response of the low-pass prototype. To do this, multiply the amplitude axis and divide the 
time axis by πBW, where BW is the 3 dB bandwidth. It is assumed that the carrier 
frequency is high enough so that many cycles occur during the burst interval. 
 
While the group delay, step and impulse curves cannot be used directly to predict the 
distortion to the waveform caused by the filter, they are a useful figure of merit when 
used to compare filters. 
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Figure 8.15: Butterworth Response 
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 Figure 8.16:  0.01 dB Chebyshev Response 
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Figure 8.17:  0.1 dB Chebyshev Response  

AMPLITUDE

AMPLITUDE (DETAIL) GROUP DELAY

STEP RESPONSEIMPULSE RESPONSE

FREQUENCY (Hz)

A
M

PL
IT

U
D

E 
(d

B
)

0

–50

–90
0.1 1.1 100.2 0.4 0.8 2.0 4.0 8.0

FREQUENCY (Hz)

A
M

PL
IT

U
D

E 
(d

B
)

0

–50

–90
0.1 1.1 100.2 0.4 0.8 2.0 4.0 8.0

FREQUENCY (Hz)FREQUENCY (Hz)
0.1 0.2 0.4 0.8 1.1 2.0 0.1 0.4 1.1 4.0 10

A
M

PL
IT

U
D

E

1.0

0

– 4.0

2
TIME (s)

0 1 3 4 5 2
TIME (s)

0 1 3 4 5

1.5

1.0

0.5

0

A
M

PL
IT

U
D

E 
(V

)

8.0

4.0

0

–2.0

AM
PL

IT
U

D
E 

(V
)

D
EL

AY
D

EL
AY

 (s
)

5.0

0



 BASIC LINEAR DESIGN  
 

8.34 

 Figure 8.18: 0.25 dB Chebyshev Response 
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Figure 8.19:  0.5 dB Chebyshev Response 
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 Figure 8.20: 1 dB Chebyshev Response 
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 Figure 8.21: Bessel Response 
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 Figure 8.22:  Linear Phase Response with Equiripple Error of 0.05° 
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 Figure 8.23:  Linear Phase Response with Equiripple Error of 0.5° 
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 Figure 8.24: Gaussian to 12 dB Response 
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 Figure 8.25: Gaussian to 6 dB Response 

AMPLITUDE

AMPLITUDE (DETAIL) GROUP DELAY

STEP RESPONSEIMPULSE RESPONSE

D
EL

A
Y 

(s
)

FREQUENCY (Hz)

A
M

PL
IT

U
D

E 
(d

B
)

0

–50

–90
0.1 1.1 100.2 0.4 0.8 2.0 4.0 8.0

FREQUENCY (Hz)

A
M

PL
IT

U
D

E 
(d

B
)

0

–50

–90
0.1 1.1 100.2 0.4 0.8 2.0 4.0 8.0

FREQUENCY (Hz)FREQUENCY (Hz)
0.1 0.2 0.4 0.8 1.1 2.0 0.1 0.4 1.1 4.0 10

A
M

PL
IT

U
D

E

1.0

0

–4.0

2
TIME (s)

0 1 3 4 5 2
TIME (s)

0 1 3 4 5

1.2

0.8

0.4

0

A
M

PL
IT

U
D

E 
(V

)

A
M

PL
IT

U
D

E 
(V

)

8.0

4.0

0

–4.0

4.0

2.0

0



 BASIC LINEAR DESIGN  
 

8.42 

 

 Figure 8.26: Butterworth Design Table 
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 Figure 8.27: 0.01 dB Chebyshev Design Table 
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 Figure 8.28: 0.1 dB Chebyshev Design Table 
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 Figure 8.29: 0.25 dB Chebyshev Design Table 
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 Figure 8.30: 0.5 dB Chebyshev Design Table 
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 Figure 8.31: 1 dB Chebyshev Design Table 
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 Figure 8.32: Bessel Design Table 
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 Figure 8.33: Linear Phase with Equiripple Error of 0.05° Design Table 
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 Figure 8.34: Linear Phase with Equiripple Error of 0.5° Design Table 
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 Figure 8.35: Gaussian to 12 dB Design Table 
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 Figure 8.36: Gaussian to 6 dB Design Table 
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Notes:
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Notes: 
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SECTION 8.5: FREQUENCY TRANSFORMATIONS 
 
Until now, only filters using the low-pass configuration have been examined. In this 
section, transforming the low-pass prototype into the other configurations: high-pass, 
band-pass, band-reject (notch) and all-pass will be discussed . 
 
 
Low-Pass to High-Pass 
 
The low-pass prototype is converted to high-pass filter by scaling by 1/s in the transfer 
function. In practice, this amounts to capacitors becoming inductors with a value 1/C, and 
inductors becoming capacitors with a value of 1/L for passive designs. For active 
designs, resistors become capacitors with a value of 1/R, and capacitors become resistors 
with a value of 1/C. This applies only to frequency setting resistor, not those only used to 
set gain. 
 
Another way to look at the transformation is to investigate the transformation in the s 
plane. The complex pole pairs of the low-pass prototype are made up of a real part, α, 
and an imaginary part, β. The normalized high-pass poles are the given by: 

and: 

A simple pole, α0, is transformed to: 

Low-pass zeros, ωz,lp, are transformed by: 

 
In addition, a number of zeros equal to the number of poles are added at the origin.  
 
After the normalized low-pass prototype poles and zeros are converted to high-pass, they 
are then denormalized in the same way as the low-pass, that is, by frequency and 
impedance.  
 
As an example a 3 pole 1 dB Chebyshev low-pass filter will be converted to a high-pass 
filter.  
 

α
α2 + β2αHP =

βHP = β
α2 + β2

αω,HP =
1
α0

ωZ,HP = 1
ωZ,LP

Eq. 8-46 

Eq. 8-47 

Eq. 8-48 

Eq. 8-49 
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From the design tables of the last section: 

This will transform to: 

Which then becomes: 

 
A worked out example of this transformation will appear in a latter section. 
 
A high-pass filter can be considered to be a low-pass filter turned on its side. Instead of a 
flat response at dc, there is a rising response of n × (20 dB/decade), due to the zeros at the 
origin, where n is the number of poles. At the corner frequency a response of  
n × (–20 dB/decade) due to the poles is added to the above rising response. This results in 
a flat response beyond the corner frequency. 
 
 
Low-Pass to Band-Pass 
 
Transformation to the band-pass response is a little more complicated. Band-pass filters 
can be classified as either wideband or narrow-band, depending on the separation of the 
poles. If the corner frequencies of the band-pass are widely separated (by more than 2 
octaves), the filter is wideband and is made up of separate low-pass and high-pass 
sections, which will be cascaded. The assumption made is that with the widely separated 
poles, interaction between them is minimal. This condition does not hold in the case of a 
narrowband band-pass filter, where the separation is less than 2 octaves. We will be 
covering the narrow-band case in this discussion. 
 
As in the highpass transformation, start with the complex pole pairs of the low-pass 
prototype, α and β. The pole pairs are known to be complex conjugates. This implies 
symmetry around dc (0 Hz.). The process of transformation to the band-pass case is one 
of mirroring the response around dc of the low-pass prototype to the same response 
around the new center frequency F0. 
  
This clearly implies that the number of poles and zeros is doubled when the band-pass 
transformation is done. As in the low-pass case, the poles and zeros below the real axis 
are ignored. So an nth order low-pass prototype transforms into an nth order band-pass, 

αLP1 =
βLP1 =
αLP2 =

.2257

.8822

.4513

αLP1 =
βLP1 =
αLP2 =

.2257

.8822

.4513

αHP1=
βHP1=
αHP2=

.2722
1.0639
2.2158

αHP1=
βHP1=
αHP2=

.2722
1.0639
2.2158

F01=
α=

Q=

F02=

1.0982
.4958
2.0173

2.2158

F01=
α=

Q=

F02=

1.0982
.4958
2.0173

2.2158
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even though the filter order will be 2n. An nth order band-pass filter will consist of n 
sections, versus n/2 sections for the low-pass prototype. It may be convenient to think of 
the response as n poles up and n poles down. 
 
The value of QBP is determined by: 

where BW is the bandwidth at some level, typically –3 dB. 
  
A transformation algorithm was defined by Geffe ( Reference 16) for converting low-
pass poles into equivalent band-pass poles. 
 
Given the pole locations of the low-pass prototype: 

 
and the values of F0 and QBP, the following calculations will result in two sets of values 
for Q and frequencies, FH and FL, which define a pair of band-pass filter sections. 

Observe that the Q of each section will be the same. 
 
The pole frequencies are determined by: 

 
Each pole pair transformation will also result in 2 zeros that will be located at the origin. 
 
A normalized low-pass real pole with a magnitude of α0 is transformed into a band-pass 
section where: 

QBP =
F0

BW

-α ± jβ

Q = 
QBP
α0

C =  α2 + β2

D =

E =

G =    E2 - 4 D2

Q =

2α
QBP

C
QBP

2 + 4

√
E + G
2 D2√

C =  α2 + β2

D =

E =

G =    E2 - 4 D2

Q =

2α
QBP

C
QBP

2 + 4

√
E + G
2 D2√

Eq. 8-50 

Eq. 8-51 

Eq. 8-52 

Eq. 8-53 

Eq. 8-54 

Eq. 8-55 

Eq. 8-56 

Eq. 8-57 

Eq. 8-58 

Eq. 8-59 

Eq. 8-60 

Eq. 8-61 

M = 

W =  M +    M2 - 1

FBP2 =  W F0

α Q
QBP

√
FBP1 = F0

W

M = 

- 1

FBP2 =  W F0

α Q
QBP

α Q
QBP

√√
FBP1 = F0

W
FBP1 = F0

W

M = 

W =  M +    M2 - 1

FBP2 =  W F0

α Q
QBP

α Q
QBP

√√
FBP1 = F0

W
FBP1 = F0

W

M = 

- 1

FBP2 =  W F0

α Q
QBP

α Q
QBP

√√
FBP1 = F0

W
FBP1 = F0

W
FBP1 = F0

W
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and the frequency is F0. 
 
Each single pole transformation will also result in a zero at the origin. 
 
Elliptical function low-pass prototypes contain zeros as well as poles. In transforming the 
filter the zeros must be transformed as well. Given the low-pass zeros at ± jωZ , the band-
pass zeros are obtained as follows: 

 
Since the gain of a band-pass filter peaks at FBP instead of F0, an adjustment in the 
amplitude function is required to normalize the response of the aggregate filter. The gain 
of the individual filter section is given by: 

where: 
   A0 = gain a filter center frequency 
   AR = filter section gain at resonance 
   F0 = filter center frequency 
   FBP = filter section resonant frequency. 
 
Again using a 3 pole 1 dB Chebychev as an example: 

A 3 dB bandwidth of 0.5 Hz. with a center frequency of 1 Hz is arbitrarily assigned. 
Then: 

QBP = 2 
Going through the calculations for the pole pair the intermediate results are: 
 

C = 0.829217          D = 0.2257   
E = 4.2073         G = 4.18302 
M = 1.0247             W = 1.245 

and: 
            FBP1 = 0.80322        FBP2 = 1.24499 

     QBP1 = QBP2 = 9.0749 
 

Gain = 4.1318 

αLP1 =
βLP1 =
αLP2 =

.2257

.8822

.4513

αLP1 =
βLP1 =
αLP2 =

.2257

.8822

.4513

AR = A0 1 + Q2 F0
FBP

FBP
F0

-( )√
2

AR = A0 1 + Q2 F0
FBP

FBP
F0

-( )F0
FBP

FBP
F0

-F0
FBP

FBP
F0

-( )√
2

Eq. 8-62 

Eq. 8-63 

Eq. 8-64 

Eq. 8-65 

Eq. 8-66 

M = 

W =  M +    M2 - 1

FBP2 =  W F0

α Q
QBP

√
FBP1 = F0

W

M = 

- 1

FBP2 =  W F0

α Q
QBP

α Q
QBP

√√
FBP1 = F0

W
FBP1 = F0

W

M = 

W =  M +    M2 - 1

FBP2 =  W F0

α Q
QBP

α Q
QBP

√√
FBP1 = F0

W
FBP1 = F0

W

M = 

- 1

FBP2 =  W F0

α Q
QBP

α Q
QBP

√√
FBP1 = F0

W
FBP1 = F0

W
FBP1 = F0

W
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And for the single pole: 
      FBP3 = 1       QBP3 = 4.431642 
 Gain = 1 

 
Again a full example will be worked out in a latter section. 

 
 
 
 

Low-Pass to Band-reject (Notch) 
 
As in the band-pass case, a band-reject filter can be either wideband or narrow-band, 
depending on whether or not the poles are separated by 2 octaves or more. To avoid 
confusion, the following convention will be adopted. If the filter is wideband, it will be 
referred to as a band-reject filter. A narrow-band filter will be referred to as a notch filter.  
 
One way to build a notch filter is to construct it as a band-pass filter whose output is 
subtracted from the input (1 – BP). Another way is with cascaded low-pass and high-pass 
sections, especially for the band-reject (wideband) case. In this case, the sections are in 
parallel, and the output is the difference.  
 
Just as the band-pass case is a direct transformation of the low-pass prototype, where dc 
is transformed to F0, the notch filter can be first transformed to the high-pass case, and 
then dc, which is now a zero, is transformed to F0. 
 
A more general approach would be to convert the poles directly. A notch transformation 
results in two pairs of complex poles and a pair of second order imaginary zeros from 
each low-pass pole pair. 
 
First, the value of QBR is determined by: 

where BW is the bandwidth at – 3dB. 
  
Given the pole locations of the low-pass prototype 
 

-α ± jβ  
 
and the values of F0 and QBR, the following calculations will result in two sets of values 
for Q and frequencies, FH and FL, which define a pair of notch filter sections. 

QBR =
F0

BW
Eq. 8-67 

Eq. 8-68 
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the pole frequencies are given by: 

 
where F0 is the notch frequency and the geometric mean of FBR1 and FBR2. 
 
A simple real pole, α0, transforms to a single section having a Q given by: 

 
with a frequency FBR = F0. There will also be transmission zero at F0. 
 
In some instances, such as the elimination of the power line frequency (hum) from low 
level sensor measurements, a notch filter for a specific frequency may be designed.  
 
Assuming that an attenuation of A dB is required over a bandwidth of B, then the 
required Q for a single frequency notch is determined by: 

 

Q = QBR α0

FBR1 =

FBR2 = K F0

FZ = F0

F0
K

F0 = √ FBR1*FBR2

FBR1 =

FBR2 = K F0

FZ = F0

F0
KFBR1 =

FBR2 = K F0

FZ = F0

F0
K

F0 = √ FBR1*FBR2F0 = √ FBR1*FBR2

Eq. 8-69 
 

Eq. 8-70 
 

Eq. 8-71 
 

Eq. 8-72 
 

Eq. 8-73 
 
 

Eq. 8-74 
 

Eq. 8.75 

Eq. 8-76 

Eq. 8-77 

Eq. 8-78 

Eq. 8-79 

Eq. 8-80 

Eq. 8-81 

Eq. 8-82 

C =  α2 + β2

D =

E =

F = E2 - D   + 42

α
QBRC

β
QBRC

C =  α2 + β2

D =

E =

F = E2 - D   + 42

α
QBRC

β
QBRC

G =       +               + D2 E2

H =

K =          (D + H)2 + (E + G)2

Q =

√F            F2
2             4√
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1
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K
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H =
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√F            F2
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ω0
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For transforming a low-pass prototype, a 3 pole 1 dB Chebychev is again used as an 
example: 

 
A 3 dB bandwidth of 0.1 Hz with a center frequency of 1 Hz is arbitrarily assigned.  
Then: 

QBR = 10 
 
Going through the calculations for the pole pair yields the intermediate results: 
 

C = 0.829217          D = 0.027218   
E = 0.106389         F = 4.01058 
G = 2.002643          H = 0.001446 
                K = 1.054614 

and 
            FBR1 = 0.94821       FBR2 = 1.0546 

     QBR1 = QBR2 = 36.7918 
 
and for the single-pole 

      FBP3 = 1       QBP3 = 4.4513 
 
Once again a full example will be worked out in a latter section. 

 
 
Low-Pass to All-Pass 
 
The transformation from low-pass to all-pass involves adding a zero in the right hand 
side of the s plane corresponding to each pole in the left hand side.  
 
In general, however, the all-pass filter is usually not designed in this manner. The main 
purpose of the all-pass filter is to equalize the delay of another filter. Many modulation 
schemes in communications use some form or another of quadrature modulation, which 
processes both the amplitude and phase of the signal.  
 
All-pass filters add delay to flatten the delay curve without changing the amplitude. In 
most cases a closed form of the equalizer is not available. Instead the amplitude filter is 
designed and the delay calculated or measured. Then graphical means or computer 
programs are used to figure out the required sections of equalization. 
 
 
 
 

αLP1 =
βLP1 =
αLP2 =

.2257

.8822

.4513

αLP1 =
βLP1 =
αLP2 =

.2257

.8822

.4513
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Each section of the equalizer gives twice the delay of the low-pass prototype due to the 
interaction of the zeros. A rough estimate of the required number of sections is given by: 
 

n = 2 ΔBW ΔT + 1  
 
Where ΔBW  is the bandwidth of interest in hertz and ΔT is the delay distortion over  ΔBW  
in seconds.  
 
 
 
 
 
 
 

Eq. 8-83 
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SECTION 8.6: FILTER REALIZATIONS 
 
Now that it has been decided what to build, it now must be decided how to build it. That 
means that it is necessary to decide which of the filter topologies to use. Filter design is a 
two step process where it is determined what is to be built (the filter transfer function) 
and then how to build it (the topology used for the circuit).  
 
In general, filters are built out of one-pole sections for real poles, and two-pole sections 
for pole pairs. While you can build a filter out of three-pole, or higher order sections, the 
interaction between the sections increases, and therefore, component sensitivities go up.  
 
It is better to use buffers to isolate the various sections. In addition, it is assumed that all 
filter sections are driven from a low impedance source. Any source impedance can be 
modeled as being in series with the filter input. 
 
In all of the design equation figures the following convention will be used: 
   

H = circuit gain in the pass band or at resonance 
  F0 = cutoff or resonant frequency in Hertz 
  ω0 = cutoff or resonant frequency in radians/sec. 
  Q = circuit “quality factor”. Indicates circuit peaking. 
  α = 1/Q = damping ratio 
 
It is unfortunate that the symbol α is used for damping ratio. It is not the same as the α 
that is used to denote pole locations (α ± jβ). The same issue occurs for Q. It is used for 
the circuit quality factor and also the component quality factor, which are not the same 
thing.  
 
The circuit Q is the amount of peaking in the circuit. This is a function of the angle of the 
pole to the origin in the s plane. The component Q is the amount of losses in what should 
be lossless reactances. These losses are the parasitics of the components; dissipation 
factor, leakage resistance, ESR (equivalent series resistance), etc. in capacitors and series 
resistance and parasitic capacitances in inductors.  
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Single-Pole RC  
 
The simplest filter building block is the passive RC section. The single-pole can be either 
low-pass or high-pass. Odd order filters will have a single-pole section. 
  
The basic form of the low-pass RC section is shown in Figure 8.37(A). It is assumed that 
the load impedance is high (> ×10), so that there is no loading of the circuit. The load 
will be in parallel with the shunt arm of the filter. If this is not the case, the section will 
have to be buffered with an op amp. A low-pass filter can be transformed to a high-pass 
filter by exchanging the resistor and the capacitor. The basic form of the high-pass filter 
is shown in Figure 8.37(B). Again it is assumed that load impedance is high. 

Figure 8.37: Single-Pole Sections 

 
The pole can also be incorporated into an amplifier circuit. Figure 8.38(A) shows an 
amplifier circuit with a capacitor in the feedback loop. This forms a low-pass filter since 
as frequency is increased, the effective feedback impedance decreases, which causes the 
gain to decrease. 
 

Figure 8.38: Single-Pole Active Filter Blocks 

 
Figure 8.38(B) shows a capacitor in series with the input resistor. This causes the signal 
to be blocked at dc. As the frequency is increased from dc, the impedance of the 
capacitor decreases and the gain of the circuit increases. This is a high-pass filter.   
    
The design equations for single-pole filters appear in Figure 8.66. 

(A)
LOWPASS

(B)
HIGHPASS

+

-
+

-

(A)
LOWPASS

(B)
HIGHPASS
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Passive LC Section 
  
While not strictly a function that uses op amps, passive filters form the basis of several 
active filters topologies and are included here for completeness.       
      
As in active filters, passive filters are built up of individual subsections. Figure 8.39 
shows low-pass filter sections. The full section is the basic two pole section. Odd order 
filters use one half section which is a single-pole section. The m derived sections, shown 
in Figure 8.40, are used in designs requiring transmission zeros as well as poles.  

 

Figure 8.39: Passive Filter Blocks (Low-pass) 

 
 

 

Figure 8.40: Passive Filter Blocks (Low-pass m-derived) 

           
A low-pass filter can be transformed into a high-pass (see Figures 8.41 and 8.42) by 
simply replacing capacitors with inductors with reciprocal values and vice versa so: 

and 

CHP = 1
LLP

CHP = 1
LLP

LHP =
1

CLP
LHP =

1
CLP

Eq. 8-84 

Eq. 8-85 

(A)
HALF SECTION

(B)
FULL SECTION

(A)
HALF SECTION

(B)
FULL SECTION
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Transmission zeros are also reciprocated in the transformation so: 

 

Figure 8.41: Passive Filter Blocks (High-pass) 

 

 
 

Figure 8.42: Passive Filter Blocks (High-pass m-derived) 

 
The low-pass prototype is transformed to band-pass and band-reject filters as well by 
using the table in Figure 8.43. 
            
For a passive filter to operate, the source and load impedances must be specified. One 
issue with designing passive filters is that in multipole filters each section is the load for 
the preceding sections and also the source impedance for subsequent sections, so 

ω Z ,HP =
1

ω Z ,LP
ω Z ,HP =

1
ω Z ,LP

Eq. 8-86 

(A)
HALF SECTION

(B)
FULL SECTION

(A)
HALF SECTION

(B)
FULL SECTION
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component interaction is a major concern. Because of this, designers typically make use 
of tables, such as in William's book (Reference 2).   
 

1
0

2 L1C1 = 1
0

2 L1C1 =

1
0

2 LaCa = 1
0

2 LaCa =

1
0

2 C2L2 = 1
0

2 C2L2 =

1
0

2 CbLb = 1
0

2 CbLb =

1
0

2 CL = 1
0

2 CL =

1
0

2 LC = 1
0

2 LC =

LOW-PASS
BRANCH

BAND-PASS
CONFIGURATION

CIRCUIT
VALUES

HIGH-PASS
BRANCH

BAND-REJECT
CONFIGURATION

CIRCUIT
VALUES

C

L

La

Cb

C

L

L1 C2

L C

La Ca

Lb

Cb

L1 C1 C2

L2

 
Figure 8.43: Low-pass → Band-pass and High-pass → Band-reject 

Transformation 

     
 
Integrator 
 
Any time that you put a frequency-dependent impedance in a feedback network the 
inverse frequency response is obtained. For example, if a capacitor, which has a 
frequency dependent impedance that decreases with increasing frequency, is put in the 
feedback network of an op amp, an integrator is formed, as in Figure 8.44.  
 

+

-

 
Figure 8.44: Integrator 

 
The integrator has high gain (i.e., the open-loop gain of the op amp) at dc. An integrator 
can also be thought of as a low-pass filter with a cutoff frequency of 0 Hz.  
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General Impedance Converter 
 
Figure 8.45 is the block diagram of a general impedance converter. The impedance of 
this circuit is: 

    
By substituting one or two capacitors into appropriate locations (the other locations being  
resistors), several impedances can be synthesized (see Reference 25). 
 
One limitation of this configuration is that the lower end of the structure must be 
grounded. 
 

 
 
 

Figure 8.45: General Impedance Converter 

Z1 Z3 Z5
Z2 Z4Z =

Z1 Z3 Z5
Z2 Z4Z = Eq. 8-87 

Z1

Z2

Z3

Z4

Z5

Z1

Z2

Z3

Z4

Z5

+

-

+

-

+

-

+
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Active Inductor 
 
Substituting a capacitor for Z4 and resistors for Z1, Z2, Z3 & Z5 in the GIC results in an 
impedance given by: 

 
By inspection it can be shown that this is an inductor with a value of: 

 
This is just one way to simulate an inductor as shown in Figure 8.46. 
 
 

 
 

Figure 8.46: Active Inductor 
 

C R1 R3 R5
R2L =

C R1 R3 R5
R2L =

R2
sC R1 R3 R5

R2Z11 = R2
sC R1 R3 R5

R2Z11 = Eq. 8-88 

Eq. 8-89 

C R1 R3 R5
R2L =

R1

R2

R3

C

R5

+

-

+

-

+

-

+
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Frequency Dependent Negative Resistor (FDNR) 
 
By substituting capacitors for two of the Z1, Z3, or Z5 elements, a structure known as a 
frequency dependant negative resistance (FDNR) is generated. The impedance of this 
structure is: 

 
This impedance, which is called a D element, has the value: 

assuming     
C1 = C2 and R2 = R5. 

 
 
The three possible versions of the FDNR are shown in Figure 8.47.  
 

+

-

+

-

+

-

+

-

+

-

+

-

(A) (B) (C)  
 

Figure 8.47: Frequency Dependent Negative Resistor Blocks 

 
There is theoretically no difference in these three blocks, and so they should be 
interchangeable. In practice though there may be some differences. Circuit (a) is 
sometimes preferred because it is the only block to provide a return path for the amplifier 
bias currents.  
 
For the FDNR filter (see Reference 24), the passive realization of the filter is used as the 
basis of the design. As in the passive filter, the FDNR filter must then be denormalized 
for frequency and impedance. This is typically done before the conversion by 1/s. First 
take the denormalized passive prototype filter and transform the elements by 1/s. This 
means that inductors, whose impedance is equal to sL, transform into a resistor with an 

sC2 R2 R4
R5

Z11 = sC2 R2 R4
R5

Z11 =

C2 R4D = C2 R4D =

Eq. 8-90 

Eq. 8-91 

Eq. 8-92 
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impedance of L. A resistor of value R becomes a capacitor with an impedance of R/s; and 
a capacitor of impedance 1/sC transforms into a frequency dependent resistor, D, with an 
impedance of 1/s2C. The transformations involved with the FDNR configuration and the 
GIC implementation of the D element are shown in Figure 8.48. We can apply this 
transformation to low-pass, high-pass, band-pass or notch filters, remembering that the 
FDNR block must be restricted to shunt arms. 
 

 

Figure 8.48: 1/s Transformation 

 
A worked out example of the FDNR filter is included in the next section. 
 
A perceived advantage of the FDNR filter in some circles is that there are no op amps in 
the direct signal path, which can add noise and/or distortion, however small, to the signal. 
It is also relatively insensitive to component variation. These advantages of the FDNR 
come at the expense of an increase in the number of components required.  
 

R C

L C 1

1

1

C

1

1
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1
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Sallen-Key 
 
The Sallen-Key configuration, also known as a voltage control voltage source (VCVS), 
was first introduced in 1955 by R. P. Sallen and E. L. Key of MIT’s Lincoln Labs (see 
Reference 14). It is one of the most widely used filter topologies and is shown in Figure 
8.49. One reason for this popularity is that this configuration shows the least dependence 
of filter performance on the performance of the op amp. This is due to the fact that the op 
amp is configured as an amplifier, as opposed to an integrator, which minimizes the gain-
bandwidth requirements of the op amp. This infers that for a given op amp, you will be 
able to design a higher frequency filter than with other topologies since the op amp gain 
bandwidth product will not limit the performance of the filter as it would if it were 
configured as an integrator. The signal phase through the filter is maintained 
(noninverting configuration).  
 
Another advantage of this configuration is that the ratio of the largest resistor value to the 
smallest resistor value and the ratio of the largest capacitor value to the smallest capacitor 
value (component spread) are low, which is good for manufacturability. The frequency 
and Q terms are somewhat independent, but they are very sensitive to the gain parameter. 
The Sallen-Key is very Q-sensitive to element values, especially for high Q sections. The 
design equations for the Sallen-Key low pass are shown in Figure 8.67.  
 

+

-

R1 C1

R2

C2

R3

R4

IN OUT

 

Figure 8.49: Sallen-Key Low-pass Filter 

 
There is a special case of the Sallen–Key low-pass filter. If the gain is set to 2, the 
capacitor values, as well as the resistor values, will be the same. 
 
While the Sallen–Key filter is widely used, a serious drawback is that the filter is not 
easily tuned, due to interaction of the component values on F0 and Q.  
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To transform the low-pass into the high-pass we simply exchange the capacitors and the 
resistors in the frequency determining network (i.e. not the amp gain resistors). This is 
shown in Figure 8.50 (opposite). The comments regarding sensitivity of the filter given 
above for the low pass case apply to the high-pass case as well. The design equations for 
the Sallen-Key high-pass are shown in Figure 8.68. 
 
The band-pass case of the Sallen-Key filter has a limitation (see Figure 8.51 below). The 
value of Q will determine the gain of the filter, i.e. it can not be set independent, as in the 
low-pass or high-pass cases. The design equations for the Sallen-Key band-pass are 
shown in Figure 8.69. 
 

+

-

C1

C2

R2

R3

R4

R1

IN OUT

 
Figure 8.50: Sallen-Key High-pass Filter 

 

Figure 8.51: Sallen-Key Band-pass Filter 

 
A Sallen-Key notch filter may also be constructed, but it has a large number of 
undesirable characteristics. The resonant frequency, or the notch frequency, can not be 
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adjusted easily due to component interaction. As in the band-pass case, the section gain is 
fixed by the other design parameters, and there is a wide spread in component values, 
especially capacitors. Because of this and the availability of easier to use circuits, it is not 
covered here. 
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Multiple Feedback 
 
The multiple feedback filter uses an op amp as an integrator as shown in Figure 8.52 
below. Therefore, the dependence of the transfer function on the op amp parameters is 
greater than in the Sallen-Key realization. It is hard to generate high Q, high frequency 
sections due to the limitations of the open-loop gain of the op amp. A rule of thumb is 
that the open-loop gain of the op amp should be at least 20 dB (×10) above the amplitude 
response at the resonant (or cutoff) frequency, including the peaking caused by the Q of 
the filter. The peaking due to Q will cause an amplitude, A0: 

 
where H is the gain of the circuit. The multiple feedback filter will invert the phase of the 
signal. This is equivalent to adding the resulting 180° phase shift to the phase shift of the 
filter itself. 

 

+

-
R1

R4

C2

R3

C5

IN

OUT

 

Figure 8.52: Multiple Feedback Low-pass 

 
The maximum to minimum component value ratios is higher in the multiple feedback 
case than in the Sallen-Key realization.  The design equations for the multiple feedback 
low-pass are given in Figure 8.70. 
 
Comments made about the multiple feedback low-pass case apply to the high-pass case 
as  
well (see Figure 8.53 opposite). Note that we again swap resistors and capacitors to 
convert the low-pass case to the high-pass case. The design equations for the multiple 
feedback high-pass are given in Figure 8.71. 
 
The design equations for the multiple feedback band-pass case (see Figure 8.54 opposite) 
are given in Figure 8.72. 

A0 = H Q Eq. 8-92 
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This circuit is widely used in low Q (< 20) applications. It allows some tuning of the 
resonant frequency, F0, by making R2 variable. Q can be adjusted (with R5) as well, but 
this will also change F0.  
 
 
Tuning of F0 can be accomplished by monitoring the output of the filter with the 
horizontal channel of an oscilloscope, with the input to the filter connected to the vertical 
channel. The display will be a Lissajous pattern. This pattern will be an ellipse that will 
collapse to a straight line at resonance, since the phase shift will be 180°. You could also 
adjust the output for maximum output, which will also occur at resonance, but this is 
usually not as precise, especially at lower values of Q where there is a less pronounced 
peak. 

Figure 8.53: Multiple Feedback High-Pass 

Figure 8.54: Multiple Feedback Band-Pass 
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State Variable 
 
The state-variable realization (see Reference 11) is shown in Figure 8.55, along with the 
design equations in Figure 8.73. This configuration offers the most precise 
implementation, at the expense of many more circuit elements. All three major 
parameters (gain, Q & ω0) can be adjusted independently, and low-pass, high-pass, and 
band-pass outputs are available simultaneously. Note that the low-pass and high-pass 
outputs are inverted in phase while the band-pass output maintains the phase. The gain of 
each of the outputs of the filter is also independently variable. With an added amplifier 
section summing the low-pass and high-pass sections the notch function can also be 
synthesized. By changing the ratio of the summed sections, low-pass notch, standard 
notch and high-pass notch functions can be realized.  A standard notch may also be 
realized by subtracting the band-pass output from the input with the added op amp 
section. An all-pass filter may also be built with the four amplifier configuration by 
subtracting the band-pass output from the input. In this instance, the band-pass gain must 
equal 2. 
 

Figure 8.55: State Variable Filter 

 
Since all parameters of the state variable filter can be adjusted independently, component 
spread can be minimized. Also, variations due to temperature and component tolerances 
are minimized. The op amps used in the integrator sections will have the same limitations 
on op amp gain-bandwidth as described in the multiple feedback section. 
 
Tuning the resonant frequency of a state variable filter is accomplished by varying R4 
and R5. While you don’t have to tune both, if you are varying over a wide range it is 
generally preferable. Holding R1 constant, tuning R2 sets the low-pass gain and tuning 
R3 sets the high-pass gain. Band-pass gain and Q are set by the ratio of R6 & R7.  
 
Since the parameters of a state variable filter are independent and tunable, it is easy to 
add electronic control of frequency, Q and ω0. This adjustment is accomplished by using 
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an analog multiplier, multiplying DACs (MDACs) or digital pots, as shown in one of the 
examples in a later section.  For the integrator sections adding the analog multiplier or 
MDAC effectively increases the time constant by dividing the voltage driving the 
resistor, which, in turn, provides the charging current for the integrator capacitor. This in 
effect raises the resistance and, in turn, the time constant. The Q and gain can be varied 
by changing the ratio of the various feedback paths. A digital pot will accomplish the 
same feat in a more direct manner, by directly changing the resistance value. The 
resultant tunable filter offers a great deal of utility in measurement and control circuitry. 
A worked out example is given in Section 8 of this chapter. 
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Biquadratic (Biquad) 
 
A close cousin of the state variable filter is the biquad as shown in Figure 8.56. The name 
of this circuit was first used by J. Tow in 1968 (Reference 11) and later by L. C. Thomas 
in 1971 (see Reference 12). The name derives from the fact that the transfer function is a 
quadratic function in both the numerator and the denominator. Hence the transfer 
function is a biquadratic function. This circuit is a slight rearrangement of the state 
variable circuit. One significant difference is that there is not a separate high-pass output. 
The band-pass output inverts the phase. There are two low-pass outputs, one in phase and 
one out of phase. With the addition of a fourth amplifier section, high-pass, notch (low-
pass, standard, and high-pass) and all-pass filters can be realized. The design equations 
for the biquad are given in Figure 8.74. 
 
 

 

Figure 8.56: Biquad Filter 

 
Referring to Figure 8.74, the all-pass case of the biquad, R8 = R9/2 and R7 = R9. This is 
required to make the terms in the transfer function line up correctly. For the high-pass 
output, the input, band-pass, and second low-pass outputs are summed. In this case the 
constraints are that R1 = R2 = R3 and R7 = R8 = R9.  
 
Like the state variable, the biquad filter is tunable. Adjusting R3 will adjust the Q. 
Adjusting R4 will set the resonant frequency. Adjusting R1 will set the gain. Frequency 
would generally be adjusted first followed by Q and then gain. Setting the parameters in 
this manner minimizes the effects of component value interaction. 
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Dual Amplifier Band-Pass (DAPB) 
 
The dual amplifier band-pass filter structure is useful in designs requiring high Qs and 
high frequencies. Its component sensitivity is small, and the element spread is low. A 
useful feature of this circuit is that the Q and resonant frequency can be adjusted more or 
less independently.  
 
Referring to Figure 8.57 below, the resonant frequency can be adjusted by R2. R1 can 
then be adjusted for Q. In this topology it is useful to use dual op amps. The match of the 
two op amps will lower the sensitivity of Q to the amplifier parameters. 
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-IN

OUT

R1

R2
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C

R4

R5

R3

 
 

Figure 8.57: Dual Amplifier Band-Pass Filter 

 
It should be noted that the DABP has a gain of 2 at resonance. If lower gain is required, 
resistor R1 may be split to form a voltage divider. This is reflected in the addendum to 
the design equations of the DABP, Figure 8.75. 
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Twin T Notch 
 
The twin T is widely used as a general purpose notch circuit as shown in Figure 8.58. 
The passive implementation of the twin T (i.e. with no feedback) has a major 
shortcoming of having a Q that is fixed at 0.25. This issue can be rectified with the 
application of positive feedback to the reference node. The amount of the signal 
feedback, set by the R4/R5 ratio, will determine the value of Q of the circuit, which, in 
turn, determines the notch depth. For maximum notch depth, the resistors R4 and R5 and 
the associated op amp can be eliminated. In this case, the junction of C3 and R3 will be 
directly connected to the output.  

 

Figure 8.58: Twin-T Notch Filter 

 
Tuning is not easily accomplished. Using standard 1% components a 60 dB notch is as 
good as can be expected, with 40 dB to 50 dB being more typical. 
 
The design equations for the Twin T are given in Figure 8.76. 
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Bainter Notch 
 
A simple notch filter is the Bainter circuit (see Reference 21). It is composed of simple 
circuit blocks with two feedback loops as shown in Figure 8.59. Also, the component 
sensitivity is very low.  
 
This circuit has several interesting properties. The Q of the notch is not based on 
component matching as it is in every other implementation, but is instead only dependant 
on the gain of the amplifiers. Therefore, the notch depth will not drift with temperature, 
aging and other environmental factors. The notch frequency may shift, but not the depth.  
 

 

Figure 8.59: Bainter Notch Filter 

 
 
Amplifier open loop gain of 104 will yield a Qz of > 200. It is capable of orthogonal 
tuning with minimal interaction. R6 tunes Q and R1 tunes ωZ. Varying R3 sets the ratio 
of ω0/ωZ produces lowpass notch (R4 > R3), notch (R4 = R3) or highpass notch (R4 < 
R3).  
 
The design equations of the Bainter circuit are given in Figure 8.77. 
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Boctor Notch 
 
The Boctor circuits (see References 22, 23), while moderately complicated, uses only one 
op amp. Due to the number of components, there is a great deal of latitude in component 
selection. These circuits also offer low sensitivity and the ability to tune the various 
parameters more or less independently.  

 

Figure 8.60: Boctor Low-Pass Notch Filter 

 
 
There are two forms, a low-pass notch (Figure 8.60 above) and a high-pass notch (Figure 
8.61 below). For the low-pass case, the preferred order of adjustment is to tune ω0 with  
 
R4, then Q0 with R2, next Qz with R3 and finally ωz with R1. 
In order for the components to be realizable we must define a variable, k1, such that: 
 

 
The design equations are given in Figure 8.78 for the low-pass case and in Figure 8.79 
for the high-pass case. 
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Figure 8.61: Boctor High-Pass Filter 

 
 
In the high-pass case circuit gain is require and it applies only when 

 
but a high-pass notch can be realized with one amplifier and only two capacitors, which 
can be the same value. The pole and zero frequencies are completely independent of the 
amplifier gain. The resistors can be trimmed so that even 5% capacitors can be used. 
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"1 – Bandpass" Notch 
 
As mentioned in the state variable and biquad sections, a notch filter can be built as 
1 - BP. The band-pass section can be any of the all pole band-pass realizations discussed 
above, or any others. Keep in mind whether the band-pass section is inverting as shown 
in Figure 8.62 (such as the multiple feedback circuit) or noninverting as shown in 
Figure 8.63 (such as the Sallen-Key), since we want to subtract, not add, the band-pass 
output from the input. 
 

 

Figure 8.62: 1 − BP Filter for Inverting Band-Pass Configurations 

 

Figure 8.63: 1 − BP Filter for Noninverting Band-Pass Configurations 

 
 
It should be noted that the gain of the band-pass amplifier must be taken into account in 
determining the resistor values. Unity gain band-pass would yield equal values. 
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First Order All-Pass 
 
The general form of a first order all-pass filter is shown in Figure 8.64.  If the function is 
a simple RC high-pass (Figure 8.64A), the circuit will have a have a phase shift that goes 
from −180° at 0 Hz. and 0°at high frequency. It will be −90° at ω = 1/RC. The resistor 
may be made variable to allow adjustment of the delay at a particular frequency. 

 

Figure 8.64: First Order All-Pass Filters 

 
If the function is changed to a low-pass function (Figure 8.64B), the filter is still a first 
order all-pass and the delay equations still hold, but the signal is inverted, changing from 
0° at dc to −180° at high frequency.  
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Second Order All-Pass 
 
A second order all-pass circuit shown in Figure 8.65 was first described by Delyiannis 
(see Reference 17). The main attraction of this circuit is that it only requires one op amp.  
Remember also that an all-pass filter can also be realized as 1 – 2BP.  
 

 

Figure 8.65: Second Order All-Pass Filter 

 
We may use any of the all pole realizations discussed above to build the filter, but you 
need to be aware of whether the BP inverts the phase or not. We must also be aware that 
the gain of the BP section must be 2. To this end, the DABP structure is particularly 
useful, since its gain is fixed at 2. 
 
Figures 8.66 through 8.81 following summarize design equations for various active filter 
realizations. In all cases, H, ωo, Q, and α are given, being taken from the design tables.  
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Figure 8.66: Single-Pole Filter Design Equations 
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Figure 8.67: Sallen-Key Low-Pass Design Equations
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Figure 8.68: Sallen-Key High-Pass Design Equations 
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Figure 8.69: Sallen-Key Band-Pass Design Equations 
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Figure 8.70: Multiple Feedback Low-Pass Design Equations 
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Figure 8.71: Multiple Feedback High-Pass Design Equations 
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Figure 8.72: Multiple Feedback Band-Pass Design Equations 

MULTIPLE FEEDBACK BANDPASS

1           1       1
R5 C3 C4    R1    R2+(       )1           1       1
R5 C3 C4    R1    R2+(       )( C3 + C4 )

C3 C4 R5 +s2 + s

1
R1 C4

- s

CHOOSE:     C3

THEN: k = 2 π FO C3

C4 =  C3  

R1 =

R2 =

R5 = 

1
H k

1
( 2Q - H) k
2Q
k

VO
VIN

=

- H ω0 s 
s2 + α ω0 s + ω0

2
- H ω0 s 

s2 + α ω0 s + ω0
2

+

-IN

OUT

R1

R2

C4

C3

R5



ANALOG FILTERS 
FILTER REALIZATIONS 

 

8.95 

 

   
 
 
 
 
 

Figure 8.73A: State Variable Design Equations 
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Figure 8.73B: State Variable Design Equations 
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Figure 7-73C: State Variable Design Equations 
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Figure 8.74A: Biquad Design Equations 
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Figure 8.74B: Biquad Design Equations 
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Figure 8.75: Dual Amplifier Band-Pass Design Equations 
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Figure 8.76: Twin-T Notch Design Equations 

TWIN T NOTCH

s2 + ω0
2

s2 + 4ω0(1-K)s + ω0
2

s2 + ω0
2

s2 + 4ω0(1-K)s + ω0
2

K =  1 -

for K = 1, eliminate R4 and R5 
(i.e R5     0, Q      ∞)

for R >> R4, eliminate buffer

1
4Q

K =  1 -

for K = 1, eliminate R4 and R5 
(i.e R5     0, Q      ∞)

for R >> R4, eliminate buffer

1
4Q

>> >>>>F0 =
1

2 π R C

R =  R1 = R2 = 2 R3

C =  C1 = C2 =
C3
2

CHOOSE:     C R’

k = 2 π F0 C

R= 1
k

R4 = (1 - K) R’

R5 = K R’

F0 =
1

2 π R CF0 =
1

2 π R C

R =  R1 = R2 = 2 R3

C =  C1 = C2 =
C3
2

CHOOSE:     C R’

k = 2 π F0 C

R= 1
k

R4 = (1 - K) R’

R5 = K R’

1
R C

1 R5                   1
R C              R4 + R5            R C4    1 -(    )

=
s2 +                                         s +

V0
VIN

s2 + 1
R C

1 R5                   1
R C              R4 + R5            R C4    1 -(    )

=
s2 +                                         s +

V0
VIN

s2 +

1 R5                   1
R C              R4 + R5            R C4    1 -(    )

=
s2 +                                         s +

V0
VIN

s2 +

+

-

+

-

IN
OUT

R1 R2

C3

C1 C2

R3

R4

R5



 BASIC LINEAR DESIGN  
 

8.102 

 

 

 

 

 

 

Figure 8.77: Bainter Notch Design Equations 
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Figure 8.78: Boctor Notch, Low-Pass, Design Equations 
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Figure 8.79A: Boctor Notch, High- Pass, Design Equations 
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Figure 8.79-B: Boctor Notch, High-Pass, Design Equations (continued) 
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Figure 8.80: First Order All-Pass Design Equations 
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Figure 8.81: Second Order All-Pass Design Equation 
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SECTION 8.7: PRACTICAL PROBLEMS IN FILTER 
IMPLEMENTATION 
 
In the previous sections filters were dealt with as mathematical functions. The filter 
designs were assumed to have been implemented with "perfect" components. When the 
filter is built with real-world components design tradeoffs must typically be made. 
 
In building a filter with an order greater the two, multiple second and/or first order 
sections are used. The frequencies and Qs of these sections must align precisely or the 
overall response of the filter will be affected. For example, the antialiasing filter design 
example in the next section is a 5th-order Butterworth filter, made up of a second order 
section with a frequency (Fo) = 1 and a Q = 1.618, a second order section with a 
frequency (Fo) = 1 and a Q = 0.618, and a first order section with a frequency (Fo) = 1 
(for a filter normalized to 1 rad/sec). If the Q or frequency response of any of the sections 
is off slightly, the overall response will deviate from the desired response. It may be 
close, but it won't be exact. As is typically the case with engineering, a decision must be 
made as to what tradeoffs should be made. For instance, do we really need a particular 
response exactly? Is there a problem if there is a little more ripple in the pass-band? Or if 
the cutoff frequency is at a slightly different frequency?  These are the types of questions 
that face a designer, and will vary from design to design. 
 
Passive Components (Resistors, Capacitors, Inductors) 
 
Passive components are the first problem. When designing filters, the calculated values 
of components will most likely not available commercially. Resistors, capacitors, and 
inductors come in standard values. While custom values can be ordered, the practical 
tolerance will probably still be ± 1% at best. An alternative is to build the required value 
out of a series and/or parallel combination of standard values. This increases the cost and 
size of the filter. Not only is the cost of components increased, so are the manufacturing 
costs, both for loading and tuning the filter. Furthermore, success will be still limited by 
the number of parts that are used, their tolerance, and their tracking, both over 
temperature and time.  
 
A more practical way is to use a circuit analysis program to determine the response using 
standard values. The program can also evaluate the effects of component drift over 
temperature. The values of the sensitive components are adjusted using parallel 
combinations where needed, until the response is within the desired limits. Many of the 
higher end filter CAD programs include this feature. 
 
The resonant frequency and Q of a filter are typically determined by the component 
values. Obviously, if the component value is drifting, the frequency and the Q of the filter 
will drift which, in turn, will cause the frequency response to vary. This is especially true 
in higher order filters.  
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Higher order implies higher Q sections. Higher Q sections means that component values 
are more critical, since the Q is typically set by the ratio of two or more components, 
typically capacitors.  
 
In addition to the initial tolerance of the components, you must also evaluate effects of 
temperature/time drift. The temperature coefficients of the various components may be 
different in both magnitude and sign. Capacitors, especially, are difficult in that not only 
do they drift, but the temperature coefficient (TC) is also a function of temperature, as 
shown in Figure 8.82. This represents the temperature coefficient of a (relatively) poor 
film capacitor, which might be typical for a polyester or polycarbonate type. Linear TC in 
film capacitors can be found in the polystyrene, polypropylene, and Teflon dielectrics. In 
these types TC is on the order of 100 ppm/°C to 200 ppm/°C, and if necessary, this can 
be compensated with a complementary TC elsewhere in the circuit. 

Figure 8.82: A Poor Film Capacitor Temperature Coefficient 

 
The lowest TC dielectrics are NPO (or COG) ceramic (±30 ppm/°C), and polystyrene  
(–120 ppm/°C). Some capacitors, mainly the plastic film types, such as polystyrene and  
polypropylene, also have a limited temperature range. 
 
While there is infinite choice of the values of the passive components for building filters, 
in practice there are physical limits. Capacitor values below 10 pF and above 10 µF are 
not practical. Electrolytic capacitors should be avoided. Electrolytic capacitors are 
typically very leaky. A further potential problem is if they are operated without a 
polarizing voltage, they become nonlinear when the ac voltage reverse biases them. Even 
with a dc polarizing voltage, the ac signal can reduce the instantaneous voltage to 0 V or 
below. Large values of film capacitors are physically very large.  
 
Resistor values of less than 100 Ω should be avoided, as should values over 1 MΩ. Very 
low resistance values (under 100 Ω) can require a great deal of drive current and 
dissipate a great deal of power. Both of these should be avoided. And low values and 
very large values of resistors may not be as readily available. Very large values tend to be 
more prone to parasitics since smaller capacitances will couple more easily into larger 
impedance levels. Noise also increases with the square root of the resistor value. Larger 
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value resistors also will cause larger offsets due to the effects of the amplifier bias 
currents. 
 
Parasitic capacitances due to circuit layout and other sources affect the performance of 
the circuit. They can form between two traces on a PC board (on the same side or 
opposite side of the board), between leads of adjacent components, and just about 
everything else you can (and in most cases can't) think of. These capacitances are usually 
small, so their effect is greater at high impedance nodes. Thus, they can be controlled 
most of the time by keeping the impedance of the circuits down. Remember that the 
effects of stray capacitance are frequency dependent, being worse at high frequencies 
because the impedance drops with increasing frequency.  
 

Parasitics are not just associated with outside sources. They are also present in the 
components themselves.  
 

A capacitor is more than just a capacitor in most instances. A real capacitor has 
inductance (from the leads and other sources) and resistance as shown in Figure 8.83. 
This resistance shows up in the specifications as leakage and poor power factor. 
Obviously, we would like capacitors with very low leakage and good power factor (see 
Figure 8.84). 
 

In general, it is best to use plastic film (preferably Teflon or polystyrene) or mica 
capacitors and metal film resistors, both of moderate to low values in our filters.  

Figure 8.83: Capacitor Equivalent Circuit 

 
One way to reduce component parasitics is to use surface mounted devices. Not having 
leads means that the lead inductance is reduced. Also, being physically smaller allows 
more optimal placement. A disadvantage is that not all types of capacitors are available 
in surface mount. Ceramic capacitors are popular surface mount types, and of these, the 
NPO family has the best characteristics for filtering. Ceramic capacitors may also be 
prone to microphonics. Microphonics occurs when the capacitor turns into a motion 
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sensor, similar to a strain gauge, and turns vibration into an electrical signal, which is a 
form of noise. 
 
Resistors also have parasitic inductances due to leads and parasitic capacitance. The 
various qualities of resistors are compared in Figure 8.85 

 
RESISTOR COMPARISON CHART 

 
Figure 8.84: Resistor Comparison Chart 
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DISCRETE Carbon  

Composition 
Lowest Cost 
High Power/Small Case Size 
Wide Range of Values 

Poor Tolerance (5%) 
Poor Temperature Coefficient 
(1500 ppm/°C) 
 

 Wirewound Excellent Tolerance (0.01%) 
Excellent TC (1 ppm/°C) 
High Power 

Reactance is a Problem 
Large Case Size 
Most Expensive 
 

 Metal Film Good Tolerance (0.1%) 
Good TC (<1 to 100 ppm/°C) 
Moderate Cost 
Wide Range of Values 
Low Voltage Coefficient 
 

Must be Stabilized with Burn-In 
Low Power 

 Bulk Metal or 
Metal Foil 

Excellent Tolerance (to 0.005%) 
Excellent TC (to <1 ppm/°C) 
Low Reactance 
Low Voltage Coefficient 
 

Low Power 
Very Expensive 

 High Mega 
Ohm  

Very High Values (108 Ω to  
1014 Ω) 
Only Choice for Some Circuits 

High Voltage Coefficient  
(200 ppm/V) 
Fragile Glass Case (Needs 
Special  Handling) 
Expensive 
 

NETWORKS Thick Film Low Cost 
High Power 
Laser-Trimmable 
Readily Available 
 

Fair Matching (0.1%) 
Poor TC (>100 ppm/°C) 
Poor Tracking TC (10 ppm/°C) 

 Thin Film Good Matching (<0.01%) 
Good TC (<100 ppm/°C) 
Good Tracking TC (2 ppm/°C) 
Moderate Cost 
Laser-Trimmable 
Low Capacitance 
Suitable for Hybrid IC Substrate 
 

Often Large Geometry 
Limited Values and 
Configurations 



ANALOG FILTERS 
PRACTICAL PROBLEMS IN FILTER IMPLEMENTATION 

8.113 

 
Figure 8.85: Capacitor Comparison Chart
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Limitations of Active Elements (Op Amps) in Filters 
 
The active element of the filter will also have a pronounced effect on the response.  
In developing the various topologies (Multiple Feedback, Sallen-Key, State Variable, 
etc.), the active element was always modeled as a "perfect" operational amplifier. That is 
to say it has:  
    1) infinite gain 
    2) infinite input impedance 
    3) zero output impedance 
 
none of which vary with frequency. While amplifiers have improved a great deal over the 
years, this model has not yet been realized. 
 
The most important limitation of the amplifier has to due with its gain variation with 
frequency. All amplifiers are band limited. This is due mainly to the physical limitations 
of the devices with which the amplifier is constructed. Negative feedback theory tells us 
that the response of an amplifier must be first order (–6 dB per octave) when the gain 
falls to unity in order to be stable. To accomplish this, a real pole is usually introduced in 
the amplifier so the gain rolls off to <1 by the time the phase shift reaches 180° (plus 
some phase margin, hopefully). This roll off is equivalent to that of a single-pole filter. 
So in simplistic terms, the transfer function of the amplifier is added to the transfer 
function of the filter to give a composite function. How much the frequency dependent 
nature of the op amp affects the filter is dependent on which topology is used as well as 
the ratio of the filter frequency to the amplifier bandwidth.  
 
The Sallen-Key configuration, for instance, is the least dependent on the frequency 
response of the amplifier. All that is required is for the amplifier response to be flat to 
just past the frequency where the attenuation of the filter is below the minimum 
attenuation required. This is because the amplifier is used as a gain block. Beyond cutoff, 
the attenuation of the filter is reduced by the rolloff of the gain of the op amp. This is 
because the output of the amplifier is phase shifted, which results in incomplete nulling 
when fed back to the input. There is also an issue with the output impedance of the 
amplifier rising with frequency as the open loop gain rolls off. This causes the filter to 
lose attenuation. 
  
The state variable configuration uses the op amps in two modes, as amplifiers and as 
integrators. As amplifiers, the constraint on frequency response is basically the same as 
for the Sallen-Key, which is flat out to the minimum attenuation frequency. As an 
integrator, however, more is required. A good rule of thumb is that the open-loop gain of 
the amplifier must be greater than 10 times the closed-loop gain (including peaking from 
the Q of the circuit). This should be taken as the absolute minimum requirement. What 
this means is that there must be 20 dB loop gain, minimum. Therefore, an op amp with  
10 MHz unity gain bandwidth is the minimum required to make a 1 MHz integrator. 
What happens is that the effective Q of the circuit increases as loop gain decreases. This 
phenomenon is called Q enhancement. The mechanism for Q enhancement is similar to 
that of slew rate limitation. Without sufficient loop gain, the op amp virtual ground is no 
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longer at ground. In other words, the op amp is no longer behaving as an op amp. 
Because of this, the integrator no longer behaves like an integrator.  
The multiple feedback configuration also places heavy constraints on the active element. 
Q enhancement is a problem in this topology as well. As the loop gain falls, the Q of the 
circuit increases, and the parameters of the filter change. The same rule of thumb as used 
for the integrator also applies to the multiple feedback topology (loop gain should be at 
least 20 dB). The filter gain must also be factored into this equation. 
  
In the FDNR realization, the requirements for the op amps are not as clear. To make the 
circuit work, we assume that the op amps will be able to force the input terminals to be 
the same voltage. This implies that the loop gain be a minimum of 20 dB at the resonant 
frequency.  
 
Also it is generally considered to be advantageous to have the two op amps in each leg 
matched. This is easily accomplished using dual op amps. It is also a good idea to have 
low bias current devices for the op amps, so FET input op amps should be used, all other 
things being equal. 
 
In addition to the frequency dependent limitations of the op amp, several others of its 
parameters may be important to the filter designer. 
 
One is input impedance. We assume in the "perfect" model that the input impedance is 
infinite. This is required so that the input of the op amp does not load the network around 
it. This means that we probably want to use FET amplifiers with high impedance circuits.  
 
There is also a small frequency dependent term to the input impedance, since the 
effective impedance is the real input impedance multiplied by the loop gain. This usually 
is not a major source of error, since the network impedance of a high frequency filter 
should be low. 
 
 
Distortion Resulting from Input Capacitance Modulation 
 
Another subtle effect can be noticed with FET input amps. The input capacitance of a 
FET changes with the applied voltage. When the amplifier is used in the inverting 
configuration, such as with the multiple feedback configuration, the applied voltage is 
held to 0 V. Therefore there is no capacitance modulation. However, when the amplifier 
is used in the noninverting configuration, such as in the Sallen-Key circuit, this form of 
distortion can exist.  
 
There are two ways to address this issue. The first is to keep the equivalent impedance 
low. The second is to balance the impedance seen by the inputs. This is accomplished by 
adding a network into the feedback leg of the amplifier which is equal to the equivalent 
input impedance. Note that this will only work for a unity gain application. 
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As an example, which is taken from the OP176 data sheet, a 1 kHz high-pass Sallen-Key 
filter is shown (Figure 8.86). Figure 8.87 shows the distortion for the uncompensated 
version (curve A1) as well as with the compensation (curve A2). Also shown is the same 
circuit with the impedances scaled up by a factor of 10 (B1 uncompensated, B2 
compensated). Note that the compensation improves the distortion, but not as much as 
having low impedance to start with.  

 

Figure 8.86: Compensation for Input Capacitance Voltage Modulation 

Figure 8.87: Distortion Due to Input Capacitance Modulation 
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Similarly, the op amp output impedance affects the response of the filter. The output 
impedance of the amplifier is divided by the loop gain, therefore the output impedance 
will rise with increasing frequency. This may have an effect with high frequency filters if 
the output impedance of the stage driving the filter becomes a significant portion of the 
network impedance.  
 
The fall of loop gain with frequency can also affect the distortion of the op amp, since 
there is less loop gain available for correction. In the multiple feedback configuration the  
feedback loop is also frequency dependent, which may further reduce the feedback 
correction, resulting in increased distortion. This effect is counteracted somewhat by the 
reduction of distortion components in the filter network (assuming a low-pass or band-
pass filter).  
 
All of the discussion so far is based on using classical voltage feedback op amps. Current 
feedback, or transimpedance, op amps offer improved high frequency response, but are 
unusable in any topologies discussed except the Sallen-Key. The problem is that 
capacitance in the feedback loop of a current feedback amplifier usually causes it to 
become unstable. Also, most current feedback amplifiers will only drive a small 
capacitive load. Therefore, it is difficult to build classical integrators using current 
feedback amplifiers. Some current feedback op amps have an external pin that may be 
used to configure them as a very good integrator, but this configuration does not lend 
itself to classical active filter designs.  
 
Current feedback integrators tend to be noninverting, which is not acceptable in the state 
variable configuration. Also, the bandwidth of a current feedback amplifier is set by its 
feedback resistor, which would make the Multiple Feedback topology difficult to 
implement. Another limitation of the current feedback amplifier in the Multiple Feedback 
configuration is the low input impedance of the inverting terminal. This would result in 
loading of the filter network. Sallen-Key filters are possible with current feedback 
amplifiers, since the amplifier is used as a noninverting gain block. New topologies that 
capitalize on the current feedback amplifiers superior high frequency performance and 
compensate for its limitations will have to be developed. 
 
 
Q Peaking and Q Enhancement 
 
The last thing that you need to be aware of is exceeding the dynamic range of the 
amplifier. Qs over 0.707 will cause peaking in the response of the filter (see Figures 8.5 
through 8.7). For high Q's, this could cause overload of the input or output stages of the 
amplifier with a large input. Note that relatively small values of Q can cause significant 
peaking. The Q times the gain of the circuit must stay under the loop gain (plus some 
margin, again, 20 dB is a good starting point). This holds for multiple amplifier 
topologies as well. Be aware of internal node levels, as well as input and output levels. 
As an amplifier overloads, its effective Q decreases, so the transfer function will appear 
to change even if the output appears undistorted. This shows up as the transfer function 
changing with increasing input level. 
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We have been dealing mostly with low-pass filters in our discussions, but the same 
principles are valid for high-pass, band-pass, and band-reject as well. In general, things 
like Q enhancement and limited gain/bandwidth will not affect high-pass filters, since the 
resonant frequency will hopefully be low in relation to the cutoff frequency of the op 
amp. Remember, though, that the high-pass filter will have a low-pass section, by default, 
at the cutoff frequency of the amplifier. Band-pass and band-reject (notch) filters will be 
affected, especially since both tend to have high values of Q.  
 
The general effect of the op amp's frequency response on the filter Q is shown in Figure 
8.88. 

Figure 8.88: Q Enhancement 

 
 

Figure 8.89: 1 kHz Multiple Feedback Band-Pass Filter 

 
As an example of the Q enhancement phenomenon, consider the Spice simulation of a   
10 kHz band-pass multiple feedback filter with Q = 10 and gain = 1, using a good high 
frequency amplifier (the AD847) as the active device. The circuit diagram is shown in 
Figure 8.89. The open-loop gain of the AD847 is greater than 70 dB at 10 kHz as shown 
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in Figure 8.91(A). This is well over the 20 dB minimum, so the filter works as designed 
as shown in Figure 8.90.  
 
We now replace the AD847 with an OP-90. The OP-90 is a dc precision amplifier and so 
has a limited bandwidth. In fact, its open-loop gain is less than 10 dB at 10 kHz (see 
Figure 8.91(B)). This is not to imply that the AD847 is in all cases better than the OP-90. 
It is a case of misapplying the OP-90.  
 
From the output for the OP-90, also shown in Figure 8.90, we see that the magnitude of 
the output has been reduced, and the center frequency has shifted downward.  
 

 

Figure 8.90: Effects of "Q Enhancement" 
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Figure 8.91: AD847 and OP-90 Bode Plots 
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SECTION 8.8: DESIGN EXAMPLES 
 
Several examples will now be worked out to demonstrate the concepts previously 
discussed 
 
Antialias Filter 
 
As an example, passive and active antialias filters will now be designed based upon a 
common set of specifications. The active filter will be designed in four ways: Sallen-Key, 
Multiple Feedback, State Variable, and Frequency Dependent Negative Resistance 
(FDNR). 
 
The specifications for the filter are given as follows: 
 

1) The cutoff frequency will be 8 kHz.  
2) The stopband attenuation will be 72 dB. This corresponds to a 12 bit 
system. 
3) Nyquist frequency of 50 kSPS. 
4) The Butterworth filter response is chosen in order to give the best 
compromise between attenuation and phase response. 

 

Figure 8.92: Determining Filter Order 
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Consulting the Butterworth response curves (Figure 8.14, reproduced above in 
Figure 8.92), we see that for a frequency ratio of 6.25 (50 kSPS/8 kSPS), that a filter 
order of 5 is required.  
 
Now consulting the Butterworth design table (Figure 8.25), the normalized poles of a 5th 
order Butterworth filter are: 
 
   STAGE            Fo          α    .                              
        1            1.000    1.618 

      2                1.000                 0.618 
      3            1.000    ------ 
 

The last stage is a real (single) pole, thus the lack of an alpha value. It should be noted 
that this is not necessarily the order of implementation in hardware. In general, you 
would typically put the real pole last and put the second order sections in order of 
decreasing alpha (increasing Q) as we have done here. This will avoid peaking due to 
high Q sections possibly overloading internal nodes. Another feature of putting the 
single-pole at the end is to bandlimit the noise of the op amps. This is especially true if 
the single-pole is implemented as a passive filter. 
 
For the passive design, we will choose the zero input impedance configuration. While 
"classic" passive filters are typically double terminated, that is with termination on both 
source and load ends, we are concerned with voltage transfer not power transfer so the 
source termination will not be used. From the design table (see Reference 2, p. 313), we 
find the normalized values for the filter (see Figure 8.93). 

 

 

Figure 8.93: Normalized Passive Filter Implementation 

 
These values are normalized for a 1 rad/s filter with a 1 Ω termination. To scale the filter 
we divide all reactive elements by the desired cutoff frequency, 8 kHz (= 50265 rad/sec, 
= 2π 8×103). This is commonly referred to as the frequency scale factor (FSF). We also 
need to scale the impedance.  
 

IN
OUT1.5451H

1.6844F

1.3820H

0.8944F

0.3090H

1Ω



ANALOG FILTERS 
DESIGN EXAMPLES 

8.123 

For this example, an arbitrary value of 1000 Ω is chosen. To scale the impedance, we 
multiply all resistor and inductor values and divide all capacitor values by this 
magnitude, which is commonly referred to as the impedance scaling factor (Z).  
 

After scaling, the circuit looks like Figure 8.94. 

Figure 8.94: Passive Filter Implementation 

 
For the Sallen-Key active filter, we use the design equations shown in Figure 8.49. The 
values for C1 in each section are arbitrarily chosen to give reasonable resistor values. The 
implementation is shown in Figure 8.95. 

 

Figure 8.95: Sallen-Key Implementation 

 
The exact values have been rounded to the nearest standard value. For most active 
realization to work correctly, it is required to have a zero-impedance driver, and a return 
path for dc due to the bias current of the op amp. Both of these criteria are approximately 
met when you use an op amp to drive the filter.  
 
In the above example the single pole has been built as an active circuit. It would have 
been just as correct to configure it as a passive RC filter. The advantage to the active 
section is lower output impedance, which may be an advantage in some applications, 
notably driving an ADC input that uses a switched capacitor structure.  
 
This type of input is common on sigma delta ADCs as well as many other CMOS type of 
converters. It also eliminates the loading effects of the input impedance of the following 
stage on the passive section. 
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Figure 8.96 shows a multiple feedback realization of our filter. It was designed using the 
equations in Figure 8.52. In this case, the last section is a passive RC circuit.  

Figure 8.96: Multiple Feedback Implementation 

 
An optional buffer could be added after the passive section, if desired. This would give 
many of the advantages outlined above, except for bandlimiting the noise of the output 
amp. By using one of the above two filter realizations, we have both an inverting and a 
noninverting design. 
 
The state variable filter, shown in Figure 8.97, was designed with the equations in Figure 
8.55. Again, we have rounded the resistor values to the nearest standard 1% value. 

Figure 8.97: State Variable Implementation 
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The Frequency Dependent Negative Resistance (FDNR) realization of this filter is shown 
in Figure 8.98.  

 

Figure 8.98: FDNR Implementation 

 
In the conversion process from passive to FDNR, the D element is normalized for a 
capacitance of 1 F. We then scale the filter to a more reasonable value (0.01 µF in this 
case).  
 
In all of the above implementations standard values were used instead of the calculated 
values. Any variation from the ideal values will cause a shift in the filter response 
characteristic, but often the effects are minimal. The computer can be used to evaluate 
these variations on the overall performance and determine if they are acceptable.  
 
To examine the effect of using standard values, take the Sallen-Key implementation. 
Figure 8.99 shows the response of each of the 3 sections of the filter. While the Sallen-
Key was the filter used, the results from any of the other implementations will give 
similar results. 
 
Figure 8.100 then shows the effect of using standard values instead of calculated values. 
Notice that the general shape of the filter remains the same, just slightly shifted in 
frequency. This investigation was done only for the standard value of the resistors. To 
understand the total effect of component tolerance the same type of calculations would 
have to be done for the tolerance of all the components and also for their temperature and 
aging effects. 
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Figure 8.99: Individual Section Response 

 

 

Figure 8.100: Effect of Using Standard Value Resistors 
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low-pass filter and may be amplified to produce excessive output offset. For low 
frequency applications requiring large value resistors, bias currents flowing through these 
resistors will also generate an output offset voltage.  
 
In addition, at higher frequencies, an op amp's dynamics must be carefully considered. 
Here, slew rate, bandwidth, and open-loop gain play a major role in op amp selection. 
The slew rate must be fast as well as symmetrical to minimize distortion.  
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Transformations 
 
In the next example the transformation process will be investigated. 
 
As mentioned earlier, filter theory is based on a low pass prototype, which is then 
manipulated into the other forms. In these examples the prototype that will be used is a 
1 kHz, 3 pole, 0.5 dB Chebyshev filter. A Chebyshev was chosen because it would show 
more clearly if the responses were not correct, a Butterworth would probably be too 
forgiving in this instance. A 3 pole filter was chosen so that a pole pair and a single-pole 
would be transformed. 
 
The pole locations for the LP prototype were taken from Figure 8.30. They are: 
     

STAGE α     β       FO               α     
                                   . 
 

        1          0.2683     0.8753     1.0688    0.5861 
        2             0.5366        0.6265 
 
The first stage is the pole pair and the second stage is the single-pole. Note the 
unfortunate convention of using α for 2 entirely separate parameters. The α and β on the 
left are the pole locations in the s-plane. These are the values that are used in the 
transformation algorithms. The α on the right is 1/Q, which is what the design equations 
for the physical filters want to see. 
 
The Sallen-Key topology will be used to build the filter. The design equations in Figure 
8.67 (pole pair) and Figure 8.66 (single pole) where then used to design the filter. The 
schematic is shown in Figure 8.101. 

 

Figure 8.101: Low-Pass Prototype 
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Using the equation string described in Section 8, the filter is now transformed into a high-
pass filter. The results of the transformation are: 
 
 
  STAGE α   β     FO        α 
               .   
        1         0.3201    1.0443    0.9356    0.5861 
        2            1.8636     1.596 
 
 
A word of caution is warranted here. Since the convention of describing a Chebyshev 
filter is to quote the end of the error band instead of the 3 dB frequency, the F0 must be 
divided (for high-pass) by the ratio of ripple band to 3 dB bandwidth (Table 1, Section 4). 
 
The Sallen-Key topology will again be used to build the filter. The design equations in 
Figure 8.68 (pole pair) and Figure 8.66 (single pole) where then used to design the filter. 
The schematic is shown in Figure 8.102. 
 

 

Figure 8.102: High-Pass Transformation 

 
Figure 8.103 shows the response of the low-pass prototype and the high-pass 
transformation. Note that they are symmetric around the cutoff frequency of 1 kHz. Also 
note that the error band is at 1 kHz, not the −3 dB point, which is characteristic of 
Chebyshev filters. 
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Figure 8.103: Low-Pass and High-Pass Response 

 
The low-pass prototype is now converted to a band-pass filter. The equation string 
outlined in Section 8.5 is used for the transformation. Each pole of the prototype filter 
will transform into a pole pair. Therefore the 3 pole prototype, when transformed, will 
have 6 poles (3 pole pairs). In addition, there will be 6 zeros at the origin. 
 
Part of the transformation process is to specify the 3 dB bandwidth of the resultant filter. 
In this case this bandwidth will be set to 500 Hz. The results of the transformation yield: 
 
  STAGE  F0  Q  A0   
                    . 

        1            804.5           7.63            3.49 
        2            1243                7.63                  3.49 
        3                          1000                3.73                     1  
 
The reason for the gain requirement for the first 2 stages is that their center frequencies 
will be attenuated relative to the center frequency of the total filter. Since the resultant 
Q's are moderate (less than 20) the Multiple Feedback topology will be chosen. Figure 
8.72 was then used to design the filter sections.  
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Figure 8.104 is the schematic of the filter and Figure 8.105 shows the filter response. 

 

Figure 8.104: Band-Pass Transformation 

Figure 8.105: Band-Pass Filter Response 
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As in the band-pass case, part of the transformation process is to specify the 3 dB 
bandwidth of the resultant filter. Again in this case this bandwidth will be set to 500 Hz. 
The results of the transformation yield: 
 
  STAGE  F0  Q  F0Z 
                       .   

        1            763.7           6.54            1000 
        2            1309                6.54                  1000 
        3                          1000                1.07                  1000  
 
Note that there are three cases of notch filters required. There is a standard notch (F0 = 
FZ, section 3), a low-pass notch (F0 <  FZ, section 1) and a high-pass notch (F0 > FZ, 
section 2). Since there is a requirement for all 3 types of notches, the Bainter Notch is 
used to build the filter. The filter is designed using Figure 8.77. The gain factors K1 and 
K2 are arbitrarily set to 1. Figure 8.106 is the schematic of the filter. 
 

 

Figure 8.106: Band-reject Transformation 
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The response of the filter is shown in Figure 8.107 and in detail in Figure 8.108. Again, 
note the symmetry around the center frequency. Again the frequencies have geometric 
symmetry. 

Figure 8.107: Band-reject Response 

Figure 8.108: Band-reject Response (detail) 
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CD Reconstruction Filter 
 
This design was done for a magazine article describing a high quality outboard D/A 
converter for use with digital audio sources (se Reference 26). 
 
A reconstruction filter is required on the output of a D/A converter because, despite the 
name, the output of a D/A converter is not really an analog voltage but instead a series of 
steps. The converter will put out a discrete voltage, which it will then hold until the next 
sample is asserted. The filter's job is to remove the high frequency components, 
smoothing out the waveform. This is why the filter is sometimes referred to as a 
smoothing filter. This also serves to eliminate the aliases of the conversion process. The 
"standard" in the audio industry is to use a 3rd-order Bessel function as the reconstruction 
filter. The reason to use a Bessel filter is that it has the best phase response. This helps to 
preserve the phase relationship of the individual tones in the music. The price for this 
phase "goodness" is that the amplitude discrimination is not as good as some other filter 
types. If we assume that we are using 8× oversampling of the 48 kSPS data stream in the 
D/A converter then the aliases will appear at 364 kHz (8 × 48 k – 20 k). The digital filter 
that is used in the interpolation process will eliminate the frequencies between 20 kHz 
and 364 kHz. If we assume that the band-edge is 30 kHz, then we have a frequency ratio 
of approximately 12 (364 ÷ 30). We use 30 kHz as the band-edge, rather than 20 kHz to 
minimize the rolloff due to the filter in the pass-band. In fact, the complete design for this 
filter includes a shelving filter to compensate for the pass-band rolloff. Extrapolating 
from Figure 8.20, a 3rd-order Bessel will only provide on the order of 55 dB attenuation 
at 12 × Fo. This is only about 9 bit accuracy. 
 
By designing the filter as 7th order, and by designing it as a linear phase with equiripple 
error of 0.05°, we can increase the stopband attenuation to about 120 dB at 12 × Fo. This 
is close to the 20 bit system that we are hoping for. 
 
The filter will be designed as a FDNR type. This is an arbitrary decision. Reasons to 
choose this topology are its low sensitivities to component tolerances and the fact that the 
op amps are in the shunt arms rather than in the direct signal path. 
 
The first step is to find the passive prototype. To do this, use the charts in Williams’ book. 
We then get the circuit shown in Figure 8.109A.  Next perform a translation in the s-plane.               
This gives the circuit shown in Figure 8.109B. This filter is scaled for a frequency of 1 Hz. 
and an impedance level of 1 Ω. The D structure of the converted filter is replaced by a 
GIC structure that can be physically realized. The filter is then denormalize by frequency       
(30 kHz) and impedance (arbitrarily chosen to be 1 kΩ). This gives a frequency-scaling 
factor (FS) of 1.884 ×105  (= 2π (3 ×104)). Next arbitrarily choose a value of 1 nF for the 
capacitor. This gives an impedance-scaling factor (Z) of 5305 (= (COLD/CNEW )/ FSF). 
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Figure 8.109A: CD Reconstruction Filter—Passive Prototype 

Figure 8.109B: CD Reconstruction Filter—Transformation in s-Plane 

 

Figure 8.109C: CD Reconstruction Filter—Normalized FDNR 

Figure 8.109D: CD Reconstruction Filter—Final Filter 
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Then multiply the resistor values by Z. This results in the resistors that had the 
normalized value of 1 Ω will now have a value of 5.305 kΩ. For the sake of simplicity 
adopt the standard value of 5.36 kΩ. Working backwards, this will cause the cutoff 
frequency to change to 29.693 kHz. This slight shift of the cutoff frequency will be 
acceptable.  
 
The frequency scaling factor is then recalculated with the new center frequency and this 
value is used to denormalize the rest of the resistors. The design flow is illustrated in 
Figure 8.109. The final schematic is shown it Figure 8.109D. 
 
The performance of the filter is shown in Figure 8.110(A-D). 
 

 

Figure 8.110: CD Filter Performance 
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Digitally Programmable State Variable Filter 
 
One of the attractive features of the state variable filter is that the parameters (gain, cutoff 
frequency and "Q") can be individually adjusted. This attribute can be exploited to allow 
control of these parameters. 
 
To start, the filter is reconfigured slightly. The resistor divider that determines Q (R6 & 
R7 of Figure 8.84) is changed to an inverting configuration. The new filter schematic is 
shown in Figure 8.111. Then the resistors R1, R2, R3 & R4 (of Figure 8.111) are 
replaced by CMOS multiplying DACs. Note that R5 is implemented as the feedback 
resistor implemented in the DAC. The schematic of this circuit is shown in Figure 8.112. 

 

Figure 8.111: Redrawn State Variable Filter 

 
The AD7528 is an 8 bit dual MDAC. The AD825 is a high speed FET input opamp. 
Using these components the frequency range can be varied from around 550 Hz to 
around 150 kHz (Figure 8.113). The Q can be varied from approximately 0.5 to over 12.5 
(Figure 8.114). The gain of circuit can be varied from 0 dB to –48 dB (Figure 8.115).  
 
The operation of the DACs in controlling the parameters can be best thought of as the 
DACs changing the effective resistance of the resistors. This relationship is: 
 
 
 

 
 
This, in effect, varies the resistance from 11 kΩ to 2.8 MΩ for the AD7528. 
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Figure 8.112: Digitally Controlled State Variable Filter 

 

Figure 8.113: Frequency Response vs. DAC Control Word 
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Figure 8.114: Q Variation vs. DAC Control Word 

 

 

Figure 8.115: Gain Variation vs. DAC Control Word 
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One limitation of this design is that the frequency is dependent on the ladder resistance of 
the DAC. This particular parameter is not controlled. DACs are trimmed so that the ratios 
of the resistors, not their absolute values, are controlled. In the case of the AD7528, the 
typical value is 11 kΩ. It is specified as 8 kΩ min. and 15 kΩ max. A simple 
modification of the circuit can eliminate this issue. The cost is 2 more op amps (Figure 
8.116). In this case, the effective resistor value is set by the fixed resistors rather than the 
DAC's resistance. Since there are 2 integrators the extra inversions caused by the added 
op amps cancel.  

 

Figure 8.116: Improved Digitally Variable Integrator 

 
As a side note, the multiplying DACs could be replaced by analog multipliers. In this 
case the control would obviously be an analog rather than a digital signal. We also could 
just as easily have used a digital pot in place of the MDACs. The difference is that 
instead of increasing the effective resistance, the value of the pot would be the maximum. 
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60 Hz Notch Filter 
 
A very common problem in instrumentation is that of interference of the telemetry that is 
to be measured. One of the primary sources of this interference is the power line. This is 
particularly true of high impedance circuits. Another path for this noise is ground loops. 
One possible solution is to use a notch filter to remove the 60 Hz component. Since this 
is a single frequency interference, the Twin-T circuit will be used.  
 
Since the maximum attenuation is desired and the minimum notch width is desired, the 
maximum Q of the circuit is desired. This means the maximum amount of positive 
feedback is used (R5 open and R4 shorted). Due to the high impedance of the network, a 
FET input op amp is used. 
 
The filter is designed using Figure 8.78. The schematic is shown in Figure 8.117 and the 
response in Figure 8.118. 
 

 

 

Figure 8.117: 60 Hz Twin-T Notch Filter 
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Figure 8.118: 60 Hz Notch Filter Response 
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