TUBE LIBRARY December 1997. * This library was developed by Norman Koren. * * For details, refer to the article, "Improved Vacuum-Tube Models * for SPICE simulations," Glass Audio, Vol. 8, No. 5, 1996, * available from Audio Amateur Corporation, 305 Union St., * PO Box 176, Peterborough, NH 03458 USA. Phone 603-924-9464. * * All the usual legal disclaimers apply. The author has made * every effort to provide correct information, but assumes no * liabilities for errors, misuse of the models, * or inevitable changes made by users. * * The author welcomes your comments, stories, and questions * (if they don't require too much effort to answer). For really * BIG stuff, he will consider consulting for a fee. * Please contact Norman Koren by Email at kormar@cts.com. * * Some models are commented out because the evaluation version of * Pspice has a maximum of twenty parts. .SUBCKT 6550 P G CS ; Pentode + PARAMS: MU= 10.52 EX= 1.376 KG1= 113.5 KP= 30.15 + KVB= 26.0 VCT= 0.00 KG2 = 4200 + CCG=14P CPG1=.85P CCP=12P RGI=1K * The Parts Connection (Tung-Sol) 6-Dec-97 * .SUBCKT 6550 P G C S * + PARAMS: MU=7.9 EX=1.35 KG1=890 KG2=4200 KP=60 * + KVB=24 VCT=0 .FUNC EUC(X,Y) {SQRT(PWR(X,2)+PWR(Y,2))} ; EUCLIDIAN SUM. .FUNC LEX(X,A) {LOG(1+EXP(A*X))/A} ; -->X FOR LARGE +A*X; 0... .FUNC PGZ(X,Y) {PWR(X,Y)+PWRS(X,Y)} ; =X^Y FOR X>0; O OTHERWISE. RE1 7 0 1G ; DUMMY SO NODE 7 HAS 2 CONNECTIONS E1 7 0 VALUE= ; E1 BREAKS UP LONG EQUATION FOR G1. +{V(S,C)*LEX(1/MU+(V(G,C)+VCT)/V(S,C),KP)} G1 P C VALUE={PGZ(V(7)/KG1,EX)*ATAN(V(P,C)/KVB)} G2 S C VALUE={(EXP(EX*(LOG((V(S,C)/MU)+V(G,C)))))/KG2} RCP P C 1G ; FOR CONVERGENCE C1 G C {CCG} ; CATHODE-GRID 1 C2 P G {CPG1} ; GRID 1-PLATE C3 P C {CCP} ; CATHODE-PLATE R1 G 5 {RGI} ; FOR GRID CURRENT D3 5 C DX ; FOR GRID CURRENT .MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) .ENDS .SUBCKT 12AX7 P G C ; MODIFIED MODEL 12/97: + PARAMS: MU=107.5 EX=1.32 KG1=178.5 KP=549 + KVB=8 VCT=0 RGI=2000 + CCG=2.3P CGP=2.4P CCP=.9P * ADD .7PF TO ADJACENT PINS; .5 TO OTHERS. .FUNC EUC(X,Y) {SQRT(PWR(X,2)+PWR(Y,2))} ; EUCLIDIAN SUM. .FUNC LEX(X,A) {LOG(1+EXP(A*X))/A} ; -->X FOR LARGE +A*X; 0... .FUNC PGZ(X,Y) {PWR(X,Y)+PWRS(X,Y)} ; =X^Y FOR X>0; O OTHERWISE. E1 7 0 VALUE= ; E1 BREAKS UP LONG EQUATION FOR G1. +{V(P,C)*LEX(1/MU+(V(G,C)+VCT)/EUC(KVB,V(P,C)),KP)} RE1 7 0 1G G1 P C VALUE={PGZ(V(7)/KG1,EX)} RCP P C 1G ; TO AVOID FLOATING NODES IN MU-FOLLOWER C1 G C {CCG} ; CATHODE-GRID C2 G P {CGP} ; GRID=PLATE C3 P C {CCP} ; CATHODE-PLATE D3 5 C DX ; FOR GRID CURRENT R1 G 5 {RGI} ; FOR GRID CURRENT .MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) .ENDS .SUBCKT EL34 1 2 3 4 ; P G1 C G2 + PARAMS: MU=11 EX=1.35 KG1=650 KG2=4200 KP=60 KVB=24 + CCG=15P CPG1=1P CCP=8P RGI=1K RE1 7 0 1MEG ; DUMMY SO NODE 7 HAS 2 CONNECTIONS E1 7 0 VALUE= ; E1 BREAKS UP LONG EQUATION FOR G1. +{V(4,3)/KP*LOG(1+EXP((1/MU+V(2,3)/V(4,3))*KP))} G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1*ATAN(V(1,3)/KVB)} G2 4 3 VALUE={(EXP(EX*(LOG((V(4,3)/MU)+V(2,3)))))/KG2} RCP 1 3 1G ; FOR CONVERGENCE C1 2 3 {CCG} ; CATHODE-GRID 1 C2 1 2 {CPG1} ; GRID 1-PLATE C3 1 3 {CCP} ; CATHODE-PLATE R1 2 5 {RGI} ; FOR GRID CURRENT D3 5 3 DX ; FOR GRID CURRENT .MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) .ENDS .SUBCKT 6SN7 P G C ; triode XV1 P G C 12AX7 + PARAMS: MU= 21.17 EX= 1.330 KG1= 232.6 KP=156.08 + KVB= 7.3 VCT= 0 * Sylvania Technical Manual 30-Nov-97 .ENDS .SUBCKT 12AU7 P G C ; triode XV1 P G C 12AX7 + PARAMS: MU= 22.98 EX= 1.295 KG1= 213.8 KP= 79.94 + KVB= 10.0 VCT= 0.00 * Tom Mitchell 30-Nov-97 .ENDS .SUBCKT 6AN8T 1 2 3 ; P G C; NEW MODEL ; TRIODE SECTION + PARAMS: MU=21.2 EX=1.36 KG1=945 KP=84 KVB=300 RGI=2000 + CCG=2.7P CGP=2.2P CCP=1.0P ; ADD .7PF TO ADJACENT PINS; .5 TO OTHERS. E1 7 0 VALUE= +{V(1,3)/KP*LOG(1+EXP(KP*(1/MU+V(2,3)/SQRT(KVB+V(1,3)*V(1,3)))))} RE1 7 0 1G G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1} RCP 1 3 1G ; TO AVOID FLOATING NODES IN MU-FOLLOWER C1 2 3 {CCG} ; CATHODE-GRID C2 2 1 {CGP} ; GRID-PLATE C3 1 3 {CCP} ; CATHODE-PLATE D3 5 3 DX ; FOR GRID CURRENT R1 2 5 {RGI} ; FOR GRID CURRENT .MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) .ENDS .SUBCKT 6AN8P 1 2 3 4 ; P G1 C G2 ; PENTODE SECTION + PARAMS: MU=45 EX=1.35 KG1=520 KG2=120 KP=120 KVB=18 + CCG=8P CPG1=.8P CCP=3P RGI=2K RE1 7 0 1MEG ; DUMMY SO NODE 7 HAS 2 CONNECTIONS E1 7 0 VALUE= ; E1 BREAKS UP LONG EQUATION FOR G1. +{V(4,3)/KP*LOG(1+EXP((1/MU+V(2,3)/V(4,3))*KP))} G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1*ATAN(V(1,3)/KVB)} G2 4 3 VALUE={(EXP(EX*(LOG((V(4,3)/MU)+V(2,3)))))/KG2} RCP 1 3 1G ; FOR CONVERGENCE C1 2 3 {CCG} ; CATHODE-GRID 1 C2 1 2 {CPG1} ; GRID 1-PLATE C3 1 3 {CCP} ; CATHODE-PLATE R1 2 5 {RGI} ; FOR GRID CURRENT D3 5 3 DX ; FOR GRID CURRENT .MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) .ENDS .SUBCKT 2A3 1 2 3 ; P G C; NEW MODEL + PARAMS: MU=4.2 EX=1.4 KG1=1500 KP=60 KVB=300 RGI=2000 + CCG=2.3P CGP=2.2P CCP=1.0P ; ADD .7PF TO ADJACENT PINS; .5 TO OTHERS. E1 7 0 VALUE= +{V(1,3)/KP*LOG(1+EXP(KP*(1/MU+V(2,3)/SQRT(KVB+V(1,3)*V(1,3)))))} RE1 7 0 1G G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1} RCP 1 3 1G ; TO AVOID FLOATING NODES IN MU-FOLLOWER C1 2 3 {CCG} ; CATHODE-GRID; WAS 1.6P C2 2 1 {CGP} ; GRID-PLATE; WAS 1.5P C3 1 3 {CCP} ; CATHODE-PLATE; WAS 0.5P D3 5 3 DX ; FOR GRID CURRENT R1 2 5 {RGI} ; FOR GRID CURRENT .MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) .ENDS .SUBCKT 300B 1 2 3 ; P G C; NEW MODEL + PARAMS: MU=3.95 EX=1.4 KG1=1550 KP=65 KVB=300 RGI=1000 + CCG=2.3P CGP=2.2P CCP=1.0P ; ADD .7PF TO ADJACENT PINS; .5 TO OTHERS. E1 7 0 VALUE= +{V(1,3)/KP*LOG(1+EXP(KP*(1/MU+V(2,3)/SQRT(KVB+V(1,3)*V(1,3)))))} RE1 7 0 1G G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1} RCP 1 3 1G ; TO AVOID FLOATING NODES IN MU-FOLLOWER C1 2 3 {CCG} ; CATHODE-GRID; WAS 1.6P C2 2 1 {CGP} ; GRID-PLATE; WAS 1.5P C3 1 3 {CCP} ; CATHODE-PLATE; WAS 0.5P D3 5 3 DX ; FOR GRID CURRENT R1 2 5 {RGI} ; FOR GRID CURRENT .MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) .ENDS .SUBCKT 6C33C 1 2 3 ; P G C; TWO CATHODES FROM BORBELY, GA 5/96. + PARAMS: MU=3.1 EX=1.4 KG1=163 KP=15 KVB=300 RGI=1000 + CCG=2.3P CGP=2.2P CCP=1.0P ; ADD .7PF TO ADJACENT PINS; .5 TO OTHERS. E1 7 0 VALUE= +{V(1,3)/KP*LOG(1+EXP(KP*(1/MU+V(2,3)/SQRT(KVB+V(1,3)*V(1,3)))))} RE1 7 0 1G G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1} RCP 1 3 1G ; TO AVOID FLOATING NODES IN MU-FOLLOWER C1 2 3 {CCG} ; CATHODE-GRID; WAS 1.6P C2 2 1 {CGP} ; GRID-PLATE; WAS 1.5P C3 1 3 {CCP} ; CATHODE-PLATE; WAS 0.5P D3 5 3 DX ; FOR GRID CURRENT R1 2 5 {RGI} ; FOR GRID CURRENT .MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) .ENDS .SUBCKT 12AT7 1 2 3 ; P G C; NEW MODEL + PARAMS: MU=60 EX=1.35 KG1=460 KP=300 KVB=300 RGI=2000 + CCG=2.3P CGP=2.2P CCP=1.0P ; ADD .7PF TO ADJACENT PINS; .5 TO OTHERS. E1 7 0 VALUE= +{V(1,3)/KP*LOG(1+EXP(KP*(1/MU+V(2,3)/SQRT(KVB+V(1,3)*V(1,3)))))} RE1 7 0 1G G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1} RCP 1 3 1G ; TO AVOID FLOATING NODES IN MU-FOLLOWER C1 2 3 {CCG} ; CATHODE-GRID; WAS 1.6P C2 2 1 {CGP} ; GRID-PLATE; WAS 1.5P C3 1 3 {CCP} ; CATHODE-PLATE; WAS 0.5P D3 5 3 DX ; FOR GRID CURRENT R1 2 5 {RGI} ; FOR GRID CURRENT .MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) .ENDS .SUBCKT 6DJ8 1 2 3 ; P G C; NEW MODEL + PARAMS: MU=28 EX=1.3 KG1=330 KP=320 KVB=300 RGI=2000 + CCG=2.3P CGP=2.1P CCP=.7P ; ADD .7PF TO ADJACENT PINS; .5 TO OTHERS. E1 7 0 VALUE= +{V(1,3)/KP*LOG(1+EXP(KP*(1/MU+V(2,3)/SQRT(KVB+V(1,3)*V(1,3)))))} RE1 7 0 1G G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1} RCP 1 3 1G ; TO AVOID FLOATING NODES IN MU-FOLLOWER C1 2 3 {CCG} ; CATHODE-GRID; WAS 1.6P C2 2 1 {CGP} ; GRID-PLATE; WAS 1.5P C3 1 3 {CCP} ; CATHODE-PLATE; WAS 0.5P D3 5 3 DX ; FOR GRID CURRENT R1 2 5 {RGI} ; FOR GRID CURRENT .MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) .ENDS .SUBCKT KT88 1 2 3 4 ; P G1 C G2 + PARAMS: MU=8.8 EX=1.35 KG1=730 KG2=4800 KP=32 KVB=16 + CCG=14P CPG1=.85P CCP=12P RGI=1K RE1 7 0 1MEG ; DUMMY SO NODE 7 HAS 2 CONNECTIONS E1 7 0 VALUE= ; E1 BREAKS UP LONG EQUATION FOR G1. +{V(4,3)/KP*LOG(1+EXP((1/MU+V(2,3)/V(4,3))*KP))} G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1*ATAN(V(1,3)/KVB)} G2 4 3 VALUE={(EXP(EX*(LOG((V(4,3)/MU)+V(2,3)))))/KG2} RCP 1 3 1G ; FOR CONVERGENCE C1 2 3 {CCG} ; CATHODE-GRID 1 C2 1 2 {CPG1} ; GRID 1-PLATE C3 1 3 {CCP} ; CATHODE-PLATE R1 2 5 {RGI} ; FOR GRID CURRENT D3 5 3 DX ; FOR GRID CURRENT .MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) .ENDS .SUBCKT PAT-4006-CFB 1 2 3 4 5 6 7 8 9 10 11 * PLITRON PAT-4006-CFB OUTPUT TRANSFORMER 2KOHM UL PRIMARY * OL NUMBERS CORRESPOND TO TRANSFORMER SCHEMATIC. .PARAM PRIML=392.5 ; TOTAL PRIMARY L (FROM SPECS). .PARAM LRATIO={5/2000} ; INDUCTANCE RATIO: (5 OHMS)/(PRIMARY). .PARAM QFCTR=400000 ; Q-FACTOR: PRIMARY SHUNT L/LEAKAGE L. LP1 1 2 {PRIML*.09} ; PRIMARY LP2 2 3 {PRIML*.04} LP3 3 4 {PRIML*.04} LP4 4 5 {PRIML*.09} CP1 1 5 .342NF ; CAPACITANCE FROM SPECS LP5 8 7 {PRIML*LRATIO/4} ; 1/2 SPEAKER SECONDARY LP6 7 6 {PRIML*LRATIO/4} ; " " LP7 11 10 {PRIML*LRATIO} ; 1/2 FBK WINDING LP8 10 9 {PRIML*LRATIO} ; " " KALL LP1 LP2 LP3 LP4 LP5 LP6 LP7 LP8 .9999987 ; 1-1/(2*403600) AWESOME! .ENDS .SUBCKT DYNA_OUTPUT_XFRMR 1 2 3 4 5 6 7 8 9 ; PARAMETERS FOR MARK 3: +PARAMS: LPRIM=60 LLKG=.040 RPRIM=125 CPRIM=1.04NF LRATIO={4/4300} * ERIC BARBOUR ARTICLE: ~233H TOTAL PRIMARY L FOR MARK 3. * MARK 3: LPRIM=60 LLKG=.040 RPRIM=125 CPRIM=1.04NF LRATIO={4/4300} * LPRIM IS THE TOTAL PRIMARY L (VARIES WITH MEASUREMENT). * LLKG IS THE LEAKAGE L (MEASURABLE: CONSISTENT). * RPRIM IS THE TOTAL PRIMARY R. * CPRIM IS THE MEASURED PRIMARY CAPACITANCE. * LRATIO IS THE INDUCTANCE RATIO: (4 OHMS)/(PRIMARY Z). .PARAM QFCTR={LPRIM/LLKG} ; Q-FACTOR. CS1 1 5 {CPRIM} ; PRIMARY CAPACITANCE RS1 1 5 300K ; SHUNT R FOR HIGH FREQUENCY EFFECTS. LP1 1 12 {LPRIM*.09} ; .7164H ; PRIMARY RP1 12 2 {RPRIM*.5} LP2 2 3 {LPRIM*.04} ; .3184H LP3 3 4 {LPRIM*.04} LP4 4 45 {LPRIM*.09} RP4 45 5 {RPRIM*.5} LP5 7 6 {.34315*LPRIM*LRATIO} ; 8-16 OHM WINDING: (2-SQRT(2))^2 LP6 8 7 {.17157*LPRIM*LRATIO} ; 4-8 OHM WINDING: (SQRT(2)-1)^2 LP7 9 8 {LPRIM*LRATIO} ; COM-4 OHM WINDING KALL LP1 LP2 LP3 LP4 LP5 LP6 LP7 {1-1/(2*QFCTR)} ; COUPLING .ENDS *model D1N5292 anode * | cathode * | | .subckt D1N5292 1 2 j1 1 2 2 jx .model jx NJF(Beta=134u Betatce=-.5 Rd=1 Rs=0 Lambda=366.1u Vto=-2.149 + Vtotc=-2.5m N=2 Xti=3 Cgd=3p Is=10f M=.5 Pb=1 Fc=.5 Af=1) * Motorola pid=NKL case=DO7 * 88-07-25 bam POVmax=100 * 88-12-16 pwt .ends *model D1N5295 anode * | cathode * | | .subckt D1N5295 1 2 j1 1 2 2 jx .model jx NJF(Beta=277.5u Betatce=-.5 Rd=1 Rs=0 Lambda=203.3u Vto=-1.721 + Vtotc=-2.5m N=2 Xti=3 Cgd=4.5p Is=10f M=.5 Pb=1 Fc=.5 Af=1) * Motorola pid=NKM case=DO7 * 88-07-25 bam POVmax=100 * 88-12-16 pwt .ends